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Aim

� investigate adolescents’ delinquency over time

Panel study Crime in the Modern City

period: 2002-2017

students in 7th grade (mostly 12–13 years old)

repeatedly interviewed over 16 years (with 1–4 years between observations)

self-administered questionnaires on various offences

� variable of interest:
total number of offences

� temporal persistence?!
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Data

Inclusion of participants who committed ≥ 1 offences within study period:

12,327 observations from 1,093 adolescents (467 male & 626 female)

72.6% of observations: no delinquent behaviour

1–160 offences committed within 12 months (median: 3)

male female
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Data characteristics & modelling challenges

1. nonlinear relationship between age & number of offences
 model effect of age nonparametrically (using B-splines)

2. delinquency level is assumed to...

• be a latent trait underlying the observed trajectories
• change gradually over time

 use state-space model (SSM)

3. observations are irregularly spaced in time
 formulate model in continuous time

continuous-time SSM
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Basic model structure

St1 St2 St3
...

Yt1 Yt2 Yt3
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Model specification

Observation process:

Yt ∼ NegBinom(νt , φ),

log(νt ) = St + f1(aget ) + f2(aget ) · gendert

with fi (aget ) =
∑8

l=1 ωi,lCl (aget )
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Model specification

State process:
dSt = −βSt dt︸ ︷︷ ︸

drift term

+ σdBt︸ ︷︷ ︸
random fluctuations

 Ornstein-Uhlenbeck (OU) process
(continuous-time analogue of the AR(1) process)

 delinquency level is persistent over time and changes gradually
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OU process: varying β > 0
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OU process: varying σ > 0

0.1
0.5

2
10

0.0 2.5 5.0 7.5 10.0

−0.2

−0.1

0.0

0.1

−1.0

−0.5

0.0

0.5

−4

−2

0

2

−20

−10

0

10

time

st
at

e

9 / 17



State process

OU process

conditional distribution:

St+∆t |St = s ∼ N
(

exp(−β∆t)s,
σ2

2β

(
1− exp(−2β∆t)

))
limiting distribution:

St ∼ N
(

0,
σ2

2β

)
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Likelihood evaluation

LT =

∫
. . .

∫
p(y1, . . . , yT , s1, . . . , sT )dsT . . . ds1

=

∫
. . .

∫
p(s1)p(y1|s1)

T∏
τ=2

p∆τ (sτ |sτ−1)p(yτ |sτ )dsT . . . ds1

intractable integration over all possible realisations of the state process at each observation time

 discretisation of state space (Kitagawa, 1987):

divide possible range [b0, bm] into m intervals Bi = (bi−1, bi ), i = 1, . . . ,m of length (bm − b0)/m

let b∗
i denote the midpoint of Bi

 LT ≈
m∑

i0=1

. . .

m∑
iT =1

p(s1 ∈ Bi0 )p(y1|s1 = b∗
i0 )

T∏
τ=2

p∆τ (sτ ∈ Biτ |sτ−1 = b∗
iτ−1 )p(yτ |sτ = b∗

iτ )
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Likelihood evaluation

approximation reframes SSM as an m-state hidden Markov model (HMM; Langrock, 2011)

 HMM forward algorithm:

L ≈ δP(y1)
( T∏
τ=2

Γ∆τ P(yτ )
)

1

δ = (δ1, . . . , δm) with δi = p(s1 ∈ Bi ) OU limiting distribution

diagonal matrix P(yτ ) with i-th entry p(yτ |sτ = b∗
i ) neg. binomial distribution

transition probability matrix Γ∆τ = (γ∆τ
ij ) with γ∆τ

ij = p∆τ (sτ ∈ Bj |sτ−1 = b∗
i ) OU conditional

distribution
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Results: state process

estimated parameters of OU process: β = 0.222, σ = 1.489

 limiting distribution: Sτ ∼ N (0, 2.232)
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R e s ult s: c o v ari at e eff e ct s
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Results: decoded states
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due to underlying delinquency levels, individuals’ trajectories deviate from the overall age trend
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Discussion

main result:
temporal persistence in the deviation of an individual’s delinquency level from population mean

(possible) future work:

• inclusion of additional covariates
• consider heterogeneity between adolescents

general continuous-time SSM framework:

• allows for non-Gaussian & non-linear specifications of the state & observation process
• offers convenience of continuous-time HMM framework
• suited for sequential data irregularly spaced in time

 great flexibility
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