Linking Executive Functions and Math Intelligence in Preschool Children: A Meta-Analysis

Valentin Emslander & Ronny Scherer
Background

What we know

- EFs are linked to broader math skills (any math test)
- EF subdimensions differ in their relation to broad math skills
- in both school students and adults
 - E.g., Friso-van den Bos et al., 2013; Peng et al., 2016

What is still debated

- What is the relation between EFs and (narrow) math intelligence?
- How strong is this relation in preschool children?
- Do EFs subdimensions differ?
- Preschool children can’t read → how does assessment influence this link?
Research Questions 1 & 2

RQ 1: Overall correlations
- All EFs
 - Inhibition
 - Shifting
 - Updating

RQ 2: Moderator effects
- Study
- Sample
- EF measurement
- Math intelligence measurement
RQ 3: Model Testing

- To what extent do the three subdimensions of EFs (i.e., inhibition, shifting, updating) differ in their ability to explain variation in math intelligence?
- How much variation do they explain jointly?
RQ 3: Model Testing

- To what extent do the three subdimensions of EFs (i.e., inhibition, shifting, updating) differ in their ability to explain variation in math intelligence?
- How much variation do they explain jointly?

Model 1

Inhibition → β_{IN} → MATH
Updating → β_{UP} → MATH
Shifting → β_{SH} → MATH

Model 2

Inhibition → β → MATH
Updating → β → MATH
Shifting → β → MATH

Model 3

Inhibition → λ_{IN} → EF
Updating → λ_{UP} → EF
Shifting → λ_{SH} → EF

EF → β_{EF} → MATH
Literature Search

- English, published 2000 or later
- Preschool children (0 - 6:11)
- No medical condition
- Report an effect size of at least one EF and one kind of math intelligence

- Screened: 4034 titles/abstracts
- Screened: 191 full texts
- Included: 29 studies

- Agreement: $\kappa = 93\%$ to $\kappa = 98\%$
Included Data

- Three-level meta-analysis
- 29 studies
- 268 effect sizes
 - 120 inhibition
 - 60 shifting
 - 78 updating
- 25,510 preschool children
Methods

- Inter-coder agreement between $\kappa = 93\%$ to $\kappa = 98\%$

- RQ 1: Overall correlation
 - Random-effects three-level meta-analysis
 - 4 meta-analyses: 1) overall, 2) inhibition, 3) shifting, 4) updating
 - metafor (Viechtbauer, 2010) & metaSEM (Cheung, 2015)

- RQ 2: Moderator effects
 1. Study (e.g., publication year)
 2. Sample (e.g., age)
 3. Measurement (e.g., tasks used to test EFs)

- RQ 3: Model Testing
 - Correlation-based meta-analytic structural equation modelling (MASEM)
 - One-stage (Cheung & Cheung, 2016) and two-stage MASEM (Jak & Cheung, 2020)
Mean correlation with math intelligence in preschool children:

<table>
<thead>
<tr>
<th>EFs</th>
<th>Correlation</th>
<th>95% CI</th>
<th>Effect sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>All EFs</td>
<td>$\bar{r} = .35$</td>
<td>[.31, .39]</td>
<td>$k = 268$</td>
</tr>
<tr>
<td>Inhibition</td>
<td>$\bar{r} = .30$</td>
<td>[.34, .42]</td>
<td>$k = 120$</td>
</tr>
<tr>
<td>Shifting</td>
<td>$\bar{r} = .38$</td>
<td>[.24, .36]</td>
<td>$k = 60$</td>
</tr>
<tr>
<td>Updating</td>
<td>$\bar{r} = .36$</td>
<td>[.31, .44]</td>
<td>$k = 78$</td>
</tr>
</tbody>
</table>

Nonsignificant differences between EFs
Descriptive Results – Measurement moderators

- Most frequently used tasks:
 - Stroop-like tasks \((k = 66 \text{ of } 120)\) to measure inhibition
 - Dimensional change tasks \((k = 46 \text{ of } 60)\) to measure shifting
 - Difficult span tasks \((k = 28 \text{ of } 78)\) to measure updating

- Administration of EF measures (total \(k = 268\))
 - verbally \((k = 96)\)
 - apparatus-based \((k = 75)\)
 - computer-based \((k = 48)\)
 - paper-and-pencil \((k = 5)\)

- Math intelligence measures
 - predominantly administered **verbally** \((k = 222; 83\%)\)
RQ 2: Moderator Effects

1. **Continent**: Larger effect for American samples

2. **EF Subdimension**: Order of effects,
 - Inhibition < Shifting = Updating

3. **EF task type**:
 - Largest effects for Composite, Tap (inhibition), Simon (inhibition), Random generation (updating), and Difficult span (updating) tasks

4. **Mode of math intelligence testing**:
 - Largest effects for verbal and behavioral testing

5. **Reliability of math intelligence measures**:
 - Measures with greater reliability showed closer link to EFs
RQ 3: Model Testing

- **Model 1**
 - inhibition \((\beta_{\text{inhibition}} = 0.16, 95 \% \text{ CI } [0.07, 0.24])\)
 - shifting \((\beta_{\text{shifting}} = 0.27, 95 \% \text{ CI } [0.19, 0.35])\)
 - updating \((\beta_{\text{updating}} = 0.27, 95 \% \text{ CI } [0.20, 0.34])\)
 - residual variance \(\sigma^2_e = 0.75 (95 \% \text{ CI } [0.69, 0.80])\)
 - Explained math intelligence variance: 25 %

- **Model 2** (equal regression coefficients for EFs)
 - overall regression coefficient \(\beta = 0.23 (95 \% \text{ CI } [0.21, 0.26])\)
 - residual variance \(\sigma^2_e = 0.75 (95 \% \text{ CI } [0.69, 0.80])\)
 - Explained math intelligence variance: 25 %

- **Model 3** (EFs as one latent variable)
 - inhibition \((\lambda_{\text{inhibition}} = 0.49, 95 \% \text{ CI } [0.41, 0.57])\)
 - shifting \((\lambda_{\text{shifting}} = 0.53, 95 \% \text{ CI } [0.45, 0.61])\)
 - updating \((\lambda_{\text{updating}} = 0.53, 95 \% \text{ CI } [0.45, 0.60])\)
 - overall regression coefficient \(\beta = 0.70 (95 \% \text{ CI } [0.62, 0.79])\)
 - residual variance was \(\sigma^2_e = 0.51 (95 \% \text{ CI } [0.37, 0.62])\)
 - Explained math intelligence variance: 49 % → One latent variable better than distinct variables
Limitations

- **Limited to preschool children** (without medical condition or disorder)
 - **Why:** Generalizability to the general public (e.g., Kingdon et al., 2016)
 - Not generalizable over other age groups or with medical conditions

- **WEIRD sample**
 - **Why:** ~74% of all effect sizes from US samples
 - Further evidence from other countries is needed

- **Small study pool**
 - **Why:** Strict exclusion criteria & lack of reporting
 - Not all moderators of interest could be investigated

- **Pragmatic categorization of EF task types**
 - **Why:** Large variety of possible categorizations (e.g., Garon et al., 2008)
 - Might lead to divergent findings to other meta-analyses
Discussion & Conclusion

- Overall correlations are similar to previous meta-analyses
 - Indicate relation, but not redundancy of EFs and math intelligence

- Age was not a significant moderator. However:
 - Trend over the previous meta-analyses,
 - Decreasing relations between math intelligence and inhibition and shifting with age.

- Moderators showed importance of task choice and psychometric quality when measuring EFs and math intelligence

- MASEM could not confirm the three core EFs to be differentially related to math intelligence
Conclusion

EF moderators:
- Task type
- Subdimension

Math moderators:
- Reliability
- Verbal / behavioral mode of testing

$r = .35$
<table>
<thead>
<tr>
<th>1) Are EFs and math intelligence related?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Yes, EFs, as a composite as well as three subdimensions, are positively and significantly related to math intelligence in preschool children.</td>
</tr>
<tr>
<td>2) What does this imply?</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>• It implies an overlap in some skills and measures and, ultimately, the involvement of EFs in solving math intelligence tasks and vice versa.</td>
</tr>
<tr>
<td>3) Does this mean, we should only measure one of the two skills?</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>• No, the evidence presented does not suggest that assessing one of the two constructs may make assessment of the other redundant.</td>
</tr>
<tr>
<td>4) Does the measurement of EFs and math intelligence influence their relation?</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>• Yes, measurement characteristics explained more variance than sample or study characteristics, showing the importance of considering the psychometric quality of both EFs and math intelligence assessments (e.g., reliability & appropriateness).</td>
</tr>
<tr>
<td>5) Are EFs best represented by three distinct EFs or with one latent variable?</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>• Representing EFs with a latent variable (capturing their covariance) explained substantially more variance in math intelligence in preschool children.</td>
</tr>
</tbody>
</table>
References

University of Luxembourg

Thank you!
Valentin Emslander
valentin.emslander@uni.lu