COVID-19 Snapshot Monitoring (COSMO) Saudi Arabia - Wave 1

Results from repeated cross-sectional monitoring of knowledge, risk perception, protective behaviour and trust during the current outbreak in Saudi Arabia

Nurah M Alamro, MD. DrPH.1,2,3, Lyan H Almana1, Abeer A Alabduljabbar1, Aljoharah I Alshunaifi1, Mashel M AlKahtani1, Rema A AlDihan1, Alanoud K Almansour1, Nada A Aloibaid1, Norah M AlOthaim1

1. College of Medicine, King Saud University, Riyadh, Saudi Arabia
2. Department of Family and Community Medicine, King Saud University Medical City, Riyadh, Saudi Arabia
3. Prince Sattam bin Abdulaziz Research Chair for Epidemiology and Public Health, King Saud University, Riyadh, Saudi Arabia

Target

The aim of this study is to assess changes in risk perceptions, the level of knowledge, trusted sources of information, trust in healthcare workers, correct knowledge about and uptake of preparedness and protective behaviours. As well as, to explore how changes in risk perceptions relate to characteristics of the outbreak and other psychological variables such as knowledge, affect, and misinformation. It also aims at exploring the relationship between psychological variables and characteristics of the outbreak situation (i.e. how closely the perceived risk mirrors reported cases, relative import risk, media reports).

Such information gained from our study intends to serve different sectors of the society. For example, it can serve authorities by understanding what affects people's perception and protective behaviour thus it helps in the distribution of efforts and available resources. Not only does it serve the general population but also the different stakeholders across government, private sector, and third sector.

All data and conclusions are to be regarded as provisional and are subject to constant change. A review team of academic colleagues also ensures the quality of the data and conclusions. Despite the greatest scientific care and the multiple-eyes principle, the participating scientists are not liable for the content.
Information about COVID-19 and the outbreak

Important: Here you will NOT find any information about COVID-19 and the pandemic in Saudi Arabia. If you are looking for that, please click here:
Ministry Of Health:
https://www.moh.gov.sa/en/HealthAwareness/EducationalContent/PublicHealth/Pages/corona.aspx
COSMO Saudi Arabia Study protocol¹: http://dx.doi.org/10.23668/psycharchives.2878
Contact: nmalamro@ksu.edu.sa

1. Summary

1.1. Results of the current wave

Analysis of the 1st wave data collection (Date 29.04.2020 - 30.04.2020). The data collection takes place every two weeks.

2984 respondents filled out the online questionnaire which was shared via social media for higher reach. We used an IP-Based duplicate protection system to avoid participants to respond to the link survey more than once. IP addresses can be traced to a single device, proxy server, or group of devices on the same network, but can’t be traced to an individual person. This procedure ensures both anonymity of participants and identification of duplicates.

Psychological Situation:

30% of the population estimated their probability of getting infected with the new coronavirus as likely/very likely. 50% of the population perceived their probability of getting infected with the new coronavirus as neither likely nor unlikely. While 20% perceived their probability of getting infected with the new coronavirus as unlikely/very unlikely. Around 31% of the population believed that they are susceptible/very susceptible to an infection with the new coronavirus, while 22% believed they are insusceptible/very insusceptible. Around 70% of the population perceived the disease as moderately to very severe. 46.1% of the population reported that they think about the new coronavirus frequently and 42.19% reported that they find it worrying. Around third of the population found the new coronavirus to be fear inducing. All the findings might change with time and events; and it will be shown in the following waves from upcoming data collection.

Higher risk perception was seen in older people, those who are or might be infected with the new coronavirus, those who know anyone who is or might be infected with the new
coronavirus, healthcare workers, people with higher incomes, those who feel that the new
coronavirus is close, makes them feel helpless, makes them feel worried and people with
chronic diseases. On the other hand, lower risk perception was seen in females and those who
take ineffective protective measures. Although low severity risk perception was seen with
people who have higher incomes and higher education; high levels of probability and
susceptibility risk perception was seen in them. High severity risk perception was seen in Saudis, those who received the flu vaccine in 2019 and those who feel that the new
coronavirus is fear inducing. High probability risk perception was seen in those who feel that
COVID-19 is new to them and something they think about. Low susceptibility risk
perception was seen in those who feel that the new coronavirus is spreading slowly.

Knowledge and Behaviour:

Overall, the population is well informed about transmission routes, incubation times and
effective protective behaviours. Almost all of the population knew that avoiding close contact
with infected others, cough hygiene, avoiding crowds, staying home when sick, and social
distancing are effective. Approximately 20% didn’t know that washing hands for 20 seconds
is effective.

On a subjective level, respondents felt well informed about COVID-19 and protection
options. Yet perceived and actual knowledge about COVID-19 were very weakly related. In
addition, feeling like you know how to protect yourself from COVID-19 and actually taken
effective protective behaviour were also weakly related.

Effective protective behaviour was taken more by people who are older and by people with
higher levels of actual knowledge of COVID-19.

Knowing someone who is or might be infected with the new coronavirus had little impact on
effective protective behaviour and ineffective protective behaviour. But people who
personally knew a suspected/confirmed case in their environment perceived more risk
(probability, susceptibility).

Adverse Behaviour

Actionism (taking ineffective protective behaviour such as taking herbal supplements) was
relatively low, with the highest actionism percentage being taking precaution when opening
packages. While the lowest actionism percentage was avoiding eating meat. Actionism was
seen more in older people, females, people with higher actual knowledge and in those who
feel that COVID-19 is media hyped. Less actionism was seen in people who believed they
have a low probability of being infected with COVID-19.
Individual Pandemic Preparation

A very small percentage of the population bought extra disinfectants and regular medications or was planning to do so. On the contrary, more than half of the population stayed away from social events and avoided people who came from infected countries but only around a quarter of the population are planning to do so. Less than 6% of the population bought food supplies on a large scale or are planning to do so. Pandemic preparation was seen more in people who trust healthcare workers, in those who believe that COVID-19 would infect them severely and in people who feel that the new coronavirus is close.

Sources of Information

To find information about the new coronavirus, our participants ranked the following sources as the most relevant: Consultation with healthcare workers, Television channels, social media and online news pages. In general, participants were feeling that the new coronavirus is somewhat not media hyped.

1.2. Change to the previous wave
In the future you will find a comparison with the previous survey here.

2. Conclusions (based on our data analysis; recommendations)

Implementing Protective Behaviour:

The level of actual knowledge was high among the population, yet it was lower than the perceived level of knowledge. The majority of people were feeling sure about the protective measures and were actually implementing them.

Managing Risk Perception:

Younger people, those who were not infected with the new coronavirus and those who feel that the new coronavirus is spreading slowly have low perception of susceptibility. This might actually affect their implementation of protective measures. We recommend clarifying that immunity varies among individuals and the perceived immunity might not be always accurate.
Precautionary Purchases:

People who feel that the new coronavirus is close to them were more likely to buy extra food supplies. While those who perceived the new coronavirus as media hyped were more likely to buy extra medications and disinfectants. People who search for information about the new coronavirus more frequently were more likely to buy extra disinfectants.

Information Seeking Behaviour

71% of the population were searching for information about the new coronavirus frequently. The most used sources of information were social media and online websites. The most trusted and the most relevant sources were consultations with health care workers and TV channels. Moreover, the most needed type of information were details about the curfew and scientific progress in development of the treatment and the vaccine.

3. The Pandemic Status:

The reported total number of COVID-19 cases during the period of data collection was 21402 with the following breakdown: 18292 active cases, 2953 recovered cases, 157 deaths, and 125 critical cases.

Saudi Arabia has instated early measures and below are key measures that were in place during the period of data collection:
1- Suspension of entry for Umrah in Mecca.
2- Schools closure
3- Mosques closure
4- Travel bans to and from Saudi Arabia.
5- Travel bans between administrative regions of Saudi Arabia.
6- Work from distance.
7- Partial curfew from 5 pm to 9 am in most administrative regions of Saudi Arabia excluding Makkah and previously isolated districts which remained under a 24-hour curfew.

4. Methods

4.1. The Sample

The study was conducted with an online electronic survey employing convenience sampling technique using an IP-Based duplicate protection system to avoid participants to respond to the link survey more than once. Data was collected through a 20 minutes web link from citizens of Saudi Arabia (Saudis and Non-Saudis) that are 18 years and older. We got 2984 complete responses in the first wave which was opened for 24 hours on 29/04/2020.
4.2. Measurements

- **Demographic Data:**
 Age, gender, education, size of residence, region of residence, working in the health sector, chronic illnesses, the number of inhabitants living in the same residence, having children living in the same residence, marital status, monthly income, nationality and whether they are currently in Saudi Arabia or not and if not which country are they at.

- **Risk Perceptions**: 3 questions about perceived susceptibility, probability and severity of infection, answers are assessed on 5-point scale.

- **Perceived and Actual knowledge about the New Coronavirus and COVID-19:**
 - **Perceived Knowledge**: 3 questions about awareness and level on knowledge of the new coronavirus
 - **Actual Knowledge**:
 - Groups at risk of severe illness related to the new coronavirus (8 items, *e.g.* Pregnant women) assessed by 3-points scale.
 - Symptoms of the new coronavirus, (9 items, *e.g.* Fever) assessed by 3-points scale.
 - General knowledge of COVID-19 with items for the correct treatment, transmission path, incubation time and immunity against the new coronavirus.

- **Infection with the New Coronavirus**:
 3 questions about being infected or knowing people that have been infected with the new coronavirus, answers are assessed by 4-points scale.

- **Feeling Prepared (self-efficacy)**:
 2 questions about protection and avoiding an infection with the new coronavirus, assessed by 5-points scale.

- **Knowledge about and Uptake of Preparedness and Protective Behaviours**:
 - Questions about effectiveness and actual applications of the recommended protective measures e.g. social distancing, we also included items for distraction (actionism) *e.g.* Avoid eating meat to look for irrelevant protective behaviour.
 - 19 items about the knowledge of effective measures to prevent the spread and infection of the new coronavirus *e.g.*: hand washing for 20 seconds.
 - 18 items about the measures taken to prevent infection of the new coronavirus *e.g.*: hand washing for 20 seconds.
• **Information Seeking Behaviour:**

 Information search frequency: Question about frequency of searching Information about the new coronavirus answers are assessed on 5-point scale.

 Trust and frequency of use: 9 items about trust and frequency of use for different media *e.g.* Newspapers and assessed by a 5-point scale.

 Type of information needed: 9 items about information needed the most *e.g.* Symptoms of the new coronavirus.

• **Public life Restoration after Curfew**

 8 items about public life restoration after curfew *e.g.* only people over the age of 70 should stay at home, assessed by 5-point scale.

• **Feelings and Behaviours:**

 Seeing people: 2 items about emotions related to not seeing friends and family, assessed by 5-point scale.

 Spread control plan implementation and crisis Behaviour: 9 items about spread control plan implementation and crisis behaviour *e.g.* Bought food supplies on a large scale, assessed by 3-point scale.

• **Risk Perception of Influenza**

 3 items about probability, severity and vulnerability of getting influenza, assessed by 5-point scale.

• **Influenza Vaccine**

 Question about receiving the seasonal influenza vaccine in 2019.

• **Policies**

 9 items about acceptance of policies, vaccine and resurrections, assessed by 5-point scale.

• **Affective Assessment:**

 8 items about the new coronavirus and how it feels is assessed by 5-point scale *e.g.* (1) worrying - (5) not worrying and (1) spreading slowly - (2) spreading fast.

• **Resilience**

 Resilience is measured using the Brief Resilience Scale *e.g.* *I don't need much time, to recover from a stressful event* assessed by 5-point scale.

• **Fears**

 9 items about fears *e.g.* losing someone I love assessed by 5-point scale.
4.3. Execution

The online survey was carried out for test subjects from Wednesday 29/4/2020 till Thursday 30/4/2020. All subjects were actively consented to data processing. Based on the socio-demographic data, subjects who are under the age of 18 were filtered out. Subjects who accepted to participate in the survey were given instructions and if necessary, a brief explanation of the new coronavirus and the current outbreak. The online survey was shared via social media for higher reach, we used an IP-Based duplicate protection system to avoid participants to respond to the link survey more than once. IP addresses can be traced to a single device, proxy server, or group of devices on the same network, but can’t be traced to an individual person. This procedure ensures both anonymity of participants and identification of duplicates.

5. Psychological Situation

Risk perception can be defined as the individual’s judgement regarding a threat, thus it plays an important role in the process of decision making, health behaviour, and emotions such as fear, stress, or feeling threatened.

5.1. Risk Perception

The following three graphs show different aspects of risk perception in the course of the survey.

![Graph showing risk perception](image)
What is your probability of getting infected with the new coronavirus?

- Very likely: 4%
- Likely: 26%
- Neither: 50%
- Unlikely: 14%
- Very unlikely: 6%

29.04.2020

How severe would contracting the new coronavirus be for you?

- Very severe: 3.3%
- Severe: 15.5%
- Moderate: 50.5%
- Mild: 23.7%
- Not at all: 7%

29.04.2020
5.2. Coronavirus and Emotions

The following three graphs show different emotional aspects about the course of the surveys.

Dominance of the subject
The new coronavirus to me feels ...

- 8.8%: Something I almost never think about
- 21.2%: Something I seldom think about
- 46.1%: Neither
- 22.2%: Something I think about sometimes
- 22.2%: Something I think about all the time

Fear
The new coronavirus to me feels ...

- 8.8%: Not fear inducing
- 12.5%: Somewhat not fear inducing
- 46.6%: Neither
- 30.1%: Somewhat fear inducing
- 22.2%: Fear inducing

29.04.2020
Worrying
The new coronavirus to me feels ...

- Not worrying
- Somewhat not worrying
- Neither
- Somewhat worrying
- Worrying

29.04.2020

5.4%
7.9%
43.5%
42.2%
5.3. Perceived and Actual Knowledge

Actual knowledge, feeling prepared and self-efficacy to avoid an infection with the coronavirus are important factors as they enable protective behaviour.

The following graph shows this wave’s level of and difference in perceived and actual levels of knowledge.

How would you rate your knowledge level on the new coronavirus?

Overview of actual knowledge

Actual knowledge of the participants about the name of the virus, treatment options, vector and incubation period;

The graph shows mean perceived and actual knowledge over time. Error bars are 95% CI.

Perceived and actual knowledge about the new coronavirus

Perceived knowledge was rated on a scale ranging from 1 (no knowledge) to 5 (very much knowledge)
5.4. Preparedness

The following graphs show mean preparedness and self-efficacy over time. Error bars are 95% CI.

I know how to protect myself from the new coronavirus
Rated on scales ranging from 1 (strongly agree) to 5 (strongly disagree)

29.4.2020

For me avoiding an infection with the new coronavirus in the current situation is
Rated on scales ranging from 1 (very easy) to 5 (very difficult)

29.4.2020
I think that the restrictions currently being implemented are greatly exaggerated.

Proportion of the people that have correctly identified all the effective protective measures
5.5. Relationships
The following examine how strongly subjective assessments are related to actual knowledge and behaviour.

Interpretation: In the following overview, higher values indicate a stronger connection, values close to zero show that there is no connection. Values around 0.3 show a medium relationship, from 0.5 one speaks of a strong relationship. A negative sign means that high values occur on one variable with low values on the other variable. Bold print shows statistically significant relationships.

- **Correlation:**
 - Perceived knowledge and actual knowledge about COVID-19: **0.12**
 - Find it easy to avoid an infection with the new coronavirus and protective behaviour (number of seized effective protective measures): **-0.05**
 - Measures that are currently being taken are exaggerated and your own protective behaviour: **0.01**
 - Measures that are currently being taken are exaggerated and own pandemic preparedness: **0.01**
 - Knowing how to protect yourself from an infection with the new coronavirus and taken effective protective behaviour: **-0.09**
6. What influences risk perception

Due to the evolving circumstances, the perception of risk among the population is likely to change. Risk is recorded as the probability of becoming ill, the severity of the disease and one's own susceptibility.

Table below describes the factors related to risk perception. Demographic variables along with the following factors: Perception of the new coronavirus, actual knowledge about the new coronavirus, being infected with the new coronavirus, knowing someone who is/might be infected, actionism and trust in media were analyzed. The analysis of the probability shows: Older people, males, those who are or might be infected with the new coronavirus, people who know anyone who is or might be infected by the new coronavirus, healthcare workers, people who feel that the new coronavirus is close to them, is new to them, makes them feel helpless, is something they think about, is worrying, people with higher actual knowledge about COVID-19, people with higher education and higher income had higher perception of the disease probability. Participants who took ineffective protective measures had lower perception of disease probability.

The analysis of the degree of severity shows: Males, Saudis, people who feel that the new coronavirus is close to them, makes them feel helpless, is worrying, is fear inducing, people with chronic health conditions, people with higher actual knowledge about COVID-19 and those who received the flu vaccine in 2019 had higher perception of disease severity. People with higher monthly income and those with higher education had lower perception of disease severity.

The analysis of perceived Susceptibility show: Older people, males, those who are or might infected with the new coronavirus, people who know anyone who is or might be infected with the new coronavirus, healthcare workers, people who feel that the new coronavirus is close to them, is worrying, people with chronic health conditions, people with higher income and higher education had higher perception of disease susceptibility. Participants who feel that the new coronavirus is spreading slowly and those who took ineffective protective measures had lower perception of disease susceptibility.

As soon as several measurement times are available, the change over time is also considered.

Interpretation: The results of a linear regression analysis are shown. Influencing factors in bold are significant and have a statistically significant influence. For values with a positive sign, this means that higher values on this influencing factor lead to more risk perception. That means for values with negative sign: higher values on this influencing factor lead to less risk perception.
<table>
<thead>
<tr>
<th>Predictors</th>
<th>Probability</th>
<th>Severity</th>
<th>Susceptibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Age (Older people)</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>-0.14</td>
<td>-0.12</td>
<td>-0.17</td>
</tr>
<tr>
<td>Own Infection</td>
<td>0.05</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Cases in a circle*</td>
<td>0.06</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Occupation</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Monthly income (Higher income)</td>
<td>0.07</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>Nationality (Saudi)</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Education (Higher education)</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Have any children</td>
<td>-0.03</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>feels close to me</td>
<td>0.23</td>
<td>0.08</td>
<td>0.19</td>
</tr>
<tr>
<td>It makes me feel helpless</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>feels new to me</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>feels spreading slowly</td>
<td>-0.03</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>feels something I think about</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>feels worrying</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Actionism**</td>
<td>-0.05</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Actual knowledge</td>
<td>0.04</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Chronic health condition</td>
<td>0.20</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Trust in media</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Vaccine received in 2019</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Observations
- Probability: 2971
- Severity: 2971
- Susceptibility: 2971

R² / R² adjusted
- Probability: 0.152 / 0.147
- Severity: 0.090 / 0.086
- Susceptibility: 0.138 / 0.134

*Individuals with a confirmed/suspected diagnosis of COVID-19 that one knows personally
**Ineffective Protective Behavior
6. What Affects Behaviour

6.1. Effective Protective Behaviour

Protective behaviour in this section reflects on the effective protective behaviour. Protective behaviour is recorded as a percentage: the higher the value, the more effective protective measures. As well as, the more measures taken by a participant the higher the percentage. In the following table factors that affect the effective protective measures can be seen.

The analysis shows (see table): Protective behaviour is taken more by people who are older and those with higher actual knowledge about COVID-19.

*Interpretation: The results of a linear regression analysis are shown. Influencing factors in bold are significant and have a statistically significant impact. For values with a positive sign: higher values on this influencing factor lead to more protective behaviour. That means for values with negative sign: higher values on this influencing factor lead to less protective behaviour.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Beta</th>
<th>standardized CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.00</td>
<td>-0.04 – 0.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (Older people)</td>
<td>0.12</td>
<td>0.08 – 0.16</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>-0.01</td>
<td>-0.05 – 0.03</td>
<td>0.651</td>
</tr>
<tr>
<td>People per household (Larger number)</td>
<td>-0.01</td>
<td>-0.05 – 0.02</td>
<td>0.447</td>
</tr>
<tr>
<td>Trust in healthcare</td>
<td>0.03</td>
<td>-0.00 – 0.07</td>
<td>0.058</td>
</tr>
<tr>
<td>Trust in media</td>
<td>-0.02</td>
<td>-0.05 – 0.02</td>
<td>0.355</td>
</tr>
<tr>
<td>Education (Higher education)</td>
<td>0.02</td>
<td>-0.02 – 0.06</td>
<td>0.318</td>
</tr>
<tr>
<td>Probability</td>
<td>-0.00</td>
<td>-0.04 – 0.04</td>
<td>0.979</td>
</tr>
<tr>
<td>Severity</td>
<td>0.00</td>
<td>-0.03 – 0.04</td>
<td>0.809</td>
</tr>
<tr>
<td>Cases in a circle*</td>
<td>-0.01</td>
<td>-0.04 – 0.03</td>
<td>0.654</td>
</tr>
<tr>
<td>Actual knowledge</td>
<td>0.11</td>
<td>0.08 – 0.15</td>
<td><0.001</td>
</tr>
<tr>
<td>Feels close to me</td>
<td>-0.03</td>
<td>-0.07 – 0.01</td>
<td>0.125</td>
</tr>
<tr>
<td>Feels media hyped</td>
<td>-0.03</td>
<td>-0.06 – 0.01</td>
<td>0.136</td>
</tr>
<tr>
<td>Feels spreading slowly</td>
<td>-0.02</td>
<td>-0.06 – 0.01</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Observations 2971
R² / R² adjusted 0.036 / 0.032

*Cases in a circle: Individuals with a confirmed/suspected diagnosis of COVID-19 that one knows personally.
6.2. Actionism (Ineffective Protective Behaviour)

Actionism which is ineffective protective behaviour is recorded as a percentage: the higher
the value, the more the ineffective protective measures. The more measures taken by a
participant the higher the percentage as well. The following table shows which factors
influence the ineffective behaviour (which was asked in the questionnaire).

The analysis shows (see table): Actionism is seen more in older people and females.
Actionism is also seen in people with higher actual knowledge and those who feel that
COVID-19 is media hyped. Less actionism is seen in people who believe they have a low
probability of being infected with COVID-19.

Interpretation: The results of a linear regression analysis are shown. Influencing factors in bold are
significant and have a statistically significant impact. For values with a positive sign: higher values
on this influencing factor lead to more actionism. That means for values with a negative sign: higher
values on this influencing factor lead to less actionism.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Beta</th>
<th>standardized CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.00</td>
<td>-0.04 – 0.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (Older people)</td>
<td>0.15</td>
<td>0.11 – 0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>0.06</td>
<td>0.03 – 0.10</td>
<td>0.001</td>
</tr>
<tr>
<td>People per household (Larger number)</td>
<td>0.02</td>
<td>-0.02 – 0.05</td>
<td>0.345</td>
</tr>
<tr>
<td>Trust in healthcare</td>
<td>-0.02</td>
<td>-0.05 – 0.02</td>
<td>0.353</td>
</tr>
<tr>
<td>Trust in media</td>
<td>-0.01</td>
<td>-0.04 – 0.03</td>
<td>0.682</td>
</tr>
<tr>
<td>Education (Higher education)</td>
<td>-0.02</td>
<td>-0.06 – 0.02</td>
<td>0.257</td>
</tr>
<tr>
<td>Probability</td>
<td>-0.05</td>
<td>-0.09 – -0.02</td>
<td>0.005</td>
</tr>
<tr>
<td>Severity</td>
<td>-0.02</td>
<td>-0.05 – 0.02</td>
<td>0.414</td>
</tr>
<tr>
<td>Cases in a circle*</td>
<td>0.03</td>
<td>-0.00 – 0.07</td>
<td>0.078</td>
</tr>
<tr>
<td>Actual knowledge</td>
<td>0.09</td>
<td>0.06 – 0.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Feels close to me</td>
<td>0.03</td>
<td>-0.01 – 0.06</td>
<td>0.155</td>
</tr>
<tr>
<td>Feels media hyped</td>
<td>0.07</td>
<td>0.04 – 0.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Feels spreading slowly</td>
<td>0.04</td>
<td>-0.00 – 0.07</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Observations | 2971 |
R² / R² adjusted | 0.045 / 0.041 |

*Cases in a circle: Individuals with a confirmed/suspected diagnosis of COVID-19 that
one knows personally.
6.3. Pandemic Preparedness

Pandemic preparation (preparedness) includes multiple behaviours such as buying large scales of food, staying away from social events and more. Preparedness is recorded as a percentage: the higher the value, the higher preparedness measures. The following table examines factors that influence the preparation for a pandemic.

The analysis shows (see table): Pandemic preparation is seen more in people who trust healthcare workers, in those who believe that COVID-19 would infect them severely and in people who feel that the coronavirus is close.

Interpretation: The results of a linear regression analysis are shown. Influencing factors in bold are significant and have a statistically significant impact. For values with a positive sign: higher values on this influencing factor lead to more crisis preparation. That means for values with a negative sign: higher values on this influencing factor lead to less crisis preparation.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Beta</th>
<th>standardized CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.00</td>
<td>-0.04 – 0.04</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (Older people)</td>
<td>0.02</td>
<td>-0.02 – 0.06</td>
<td>0.241</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td>0.02</td>
<td>-0.02 – 0.06</td>
<td>0.320</td>
</tr>
<tr>
<td>People per household (Larger number)</td>
<td>0.01</td>
<td>-0.02 – 0.05</td>
<td>0.488</td>
</tr>
<tr>
<td>Trust in healthcare</td>
<td>0.05</td>
<td>0.01 – 0.09</td>
<td>0.007</td>
</tr>
<tr>
<td>Trust in media</td>
<td>-0.00</td>
<td>-0.04 – 0.03</td>
<td>0.792</td>
</tr>
<tr>
<td>Education (Higher education)</td>
<td>-0.02</td>
<td>-0.05 – 0.02</td>
<td>0.422</td>
</tr>
<tr>
<td>Probability</td>
<td>-0.03</td>
<td>-0.07 – 0.01</td>
<td>0.179</td>
</tr>
<tr>
<td>Severity</td>
<td>0.06</td>
<td>0.02 – 0.10</td>
<td>0.002</td>
</tr>
<tr>
<td>Cases in a circle*</td>
<td>0.03</td>
<td>-0.01 – 0.06</td>
<td>0.145</td>
</tr>
<tr>
<td>Actual knowledge</td>
<td>0.00</td>
<td>-0.03 – 0.04</td>
<td>0.833</td>
</tr>
<tr>
<td>Feels close to me</td>
<td>0.07</td>
<td>0.03 – 0.10</td>
<td>0.001</td>
</tr>
<tr>
<td>Feels media hyped</td>
<td>0.01</td>
<td>-0.02 – 0.05</td>
<td>0.484</td>
</tr>
<tr>
<td>Feels spreading slowly</td>
<td>-0.00</td>
<td>-0.04 – 0.04</td>
<td>0.994</td>
</tr>
</tbody>
</table>

Observations: 2971
R² / R² adjusted: 0.045 / 0.041

Cases in a circle: Individuals with a confirmed/suspected diagnosis of COVID-19 that one knows personally.
6.4. Precautionary Purchases

This section examines which factors are related to whether people have
a) bought extra food as a precaution
b) bought extra medications which include buying extra over the counter medications, extra
prescription medication and extra medications that they take regularly.
c) purchasing extra disinfectants.

“Data in Detail” lists how often these behaviours are shown.

People who know someone who is or might be infected, those who received the flu vaccine in 2019
and those who feel that the new coronavirus is close to them were more likely to buy extra food.

Older people, males and those who feel that the new coronavirus is media hyped were more likely to
buy extra medications.

People who received the flu vaccine in 2019, people who feel that the new coronavirus is media
hyped, people who are married, those who live in larger houses and those who search for information
about the new coronavirus more frequently were more likely to buy extra disinfectants. People who
live in Riyadh were less likely to buy extra disinfectants.

*Interpretation: The table presents the results of three linear regression analyses (backwards
elimination). Best statistical model is presented in this table. Odds ratio makes a statement about the
extent to which the presence or absence of a feature A (e.g. perceived closeness) is related to the
presence or absence of another feature B (e.g. precautionary purchases). Influencing factors in bold
are significant and have a statistically significant influence. Values above 1: higher values on this
influencing factor lead to more buying behaviour. Values below 1: smaller values on this influencing
factor lead to less buying behaviour.*
<table>
<thead>
<tr>
<th>Predictors</th>
<th>Purchasing food</th>
<th>Purchasing extra medications</th>
<th>Purchasing disinfectants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odds Ratios</td>
<td>CI</td>
<td>Odds Ratios</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>0.15</td>
<td>0.08 – 0.30</td>
<td>0.09</td>
</tr>
<tr>
<td>Trust in media</td>
<td>1.08</td>
<td>0.99 – 1.18</td>
<td>1.11</td>
</tr>
<tr>
<td>Cases in a circle*</td>
<td>1.54</td>
<td>1.07 – 2.18</td>
<td>1.32</td>
</tr>
<tr>
<td>Actual knowledge</td>
<td>0.54</td>
<td>0.25 – 1.18</td>
<td>0.57</td>
</tr>
<tr>
<td>Feels close to me</td>
<td>1.38</td>
<td>1.00 – 1.88</td>
<td>1.31</td>
</tr>
<tr>
<td>Feels media hyped</td>
<td>1.27</td>
<td>0.98 – 1.64</td>
<td>1.47</td>
</tr>
<tr>
<td>Occupation</td>
<td>1.42</td>
<td>0.93 – 2.12</td>
<td>1.35</td>
</tr>
<tr>
<td>Vaccine received in 2019</td>
<td>1.35</td>
<td>1.00 – 1.80</td>
<td>1.34</td>
</tr>
<tr>
<td>Have any children</td>
<td>0.83</td>
<td>0.66 – 1.05</td>
<td></td>
</tr>
<tr>
<td>Age (Older people)</td>
<td></td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>Gender (Female)</td>
<td></td>
<td></td>
<td>0.75</td>
</tr>
<tr>
<td>Trust in healthcare</td>
<td></td>
<td></td>
<td>1.30</td>
</tr>
<tr>
<td>Severity</td>
<td></td>
<td></td>
<td>1.11</td>
</tr>
<tr>
<td>Region (People living in Riyadh)</td>
<td></td>
<td></td>
<td>1.15</td>
</tr>
<tr>
<td>People per household (Larger number)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of housing (Larger houses)</td>
<td></td>
<td></td>
<td>1.06</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td>1.39</td>
</tr>
<tr>
<td>Monthly income (Higher income)</td>
<td></td>
<td></td>
<td>1.10</td>
</tr>
<tr>
<td>Frequency of information search about the situation</td>
<td></td>
<td></td>
<td>1.17</td>
</tr>
<tr>
<td>Observations</td>
<td>2971</td>
<td></td>
<td>2971</td>
</tr>
<tr>
<td>R Tjur</td>
<td>0.011</td>
<td></td>
<td>0.008</td>
</tr>
</tbody>
</table>

*Cases in a circle: Individuals with a confirmed/suspected diagnosis of COVID-19 that one knows personally.
7. Information Seeking Behaviours

7.1. Information Search Frequency

How often do you inform yourself about the new coronavirus / COVID-19? Answers are assessed on 5-point scales from never - very often, 1-2 lowest category, 3 mid category, 4-5 highest category.

Frequency of searching for information about the new coronavirus
Mean values and 95% confidence interval

- 71% often/very often
- 21% sometimes
- 9% never/rarely

29.04.2020
7.2. Use

How often do you use the following sources of information to stay informed about the new coronavirus?

Frequency of media use

Rated on scales ranging from 1 (not at all) to 5 (always)
Mean values and 95% confidence intervals

- Radio channels: 1.43
- Newspapers: 1.78
- Conversations with work colleagues: 2.01
- Search engines: 2.14
- Conversations with family and friends: 2.64
- Television channels: 2.85
- Consultations with health workers: 3.04
- Websites or online pages: 3.09
- Social media (e.g. Facebook, Twitter, YouTube, WhatsApp): 3.67
7.3. Trust

How much do you trust the following source of information in their reporting about the new coronavirus?

The graph displays mean trust, error bars are 95% CIs.
7.4. Relevance

Relevance is the normalized mathematical product of trust x frequency of use.

The graph displays mean relevance, error bars are 95% CIs.
7.5. Type of Information

The type of information I need the most is related to the following items

![Bar chart showing the type of information needed]

- Details on curfew: 88.20%
- Travel restrictions: 34.30%
- Take care of children's education: 40.20%
- How to take care of a person who is in risk: 50.50%
- Prevent the spread: 75.80%
- Scientific progress in development of the treatment: 78.40%
- Scientific progress in development of the vaccine: 78.70%
- Personal stories: 46.70%
- Symptoms of the new coronavirus: 50.20%
7.6. Coronavirus as a Media Hype

The new coronavirus to me feels ...
Rated on scales ranging from 1 (media hyped) to 5 (not media hyped)

![Bar Chart]

<table>
<thead>
<tr>
<th>Not media hyped</th>
<th>Media hyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

29.4.2020

3.62
8. Data in details

8.1. Knowledge about COVID-19

Knowledge of treatment options
Assessment of participants; single selection

- Drug
- Vaccine
- Both drug and vaccine
- Neither drug nor vaccine
- Don’t know

Knowledge of disease carriers
Assessment of participants; single selection

- Person to person
- Animals to human
- Not transmissible
- Don’t know
Knowledge of the consequences of surviving the illness
Assessment of participants; single selection

- **77%** Immune after the recovery
- **13.2%** Not necessarily immune after the recovery
- **9.8%** Don’t know

Date: 29.04.2020
8.2. Know and Take Effective Protective Measures

Which of the following measures are effective protective measures to prevent the spread and infection with the new coronavirus? (Illustration: effective protective measures)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wearing a face mask</td>
<td>90.18%</td>
</tr>
<tr>
<td>Handwashing for 20 seconds</td>
<td>80.83%</td>
</tr>
<tr>
<td>Avoiding touching your eyes, nose, and mouth with unwashed hands</td>
<td>98.83%</td>
</tr>
<tr>
<td>Use of disinfectants</td>
<td>87.10%</td>
</tr>
<tr>
<td>Staying home when you are sick</td>
<td>95.27%</td>
</tr>
<tr>
<td>Covering your mouth when you cough</td>
<td>98.66%</td>
</tr>
<tr>
<td>Avoiding close contact with someone infected</td>
<td>99.16%</td>
</tr>
<tr>
<td>Avoiding crowds</td>
<td>99.53%</td>
</tr>
<tr>
<td>Social distancing</td>
<td>99.43%</td>
</tr>
<tr>
<td>Self-quarantine</td>
<td>98.93%</td>
</tr>
</tbody>
</table>
Effective protective measures that were actually implemented
Current survey wave 29.04.2020

- Wearing a face mask: 82.67%
- Handwashing for 20 seconds: 91.59%
- Avoiding touching your eyes, nose, and mouth with unwashed hands: 94.97%
- Use of disinfectants: 86.73%
- Staying home when you are sick: 95.81%
- Covering your mouth when you cough: 97.45%
- Avoiding close contact with someone infected: 98.19%
- Avoiding crowds: 99.23%
- Social distancing: 98.72%
- Self-quarantine: 97.72%
8.3. Ineffective Protective Measures and Actionism

Which of the following measures are effective protective measures to prevent the spread and infection with the new coronavirus? (Illustration: ineffective protective measures, interpreted as actionism)

<table>
<thead>
<tr>
<th>Measure</th>
<th>Yes (%)</th>
<th>No (%)</th>
<th>Don’t know (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herbal supplements</td>
<td>70.44%</td>
<td>22.59%</td>
<td>7.07%</td>
</tr>
<tr>
<td>Taking food supplements</td>
<td>23.09%</td>
<td>55.97%</td>
<td>20.95%</td>
</tr>
<tr>
<td>Ensuring a balanced diet</td>
<td>61.70%</td>
<td>22.25%</td>
<td>16.05%</td>
</tr>
<tr>
<td>Using caution when opening packages</td>
<td>89.86%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoiding eating meat</td>
<td></td>
<td>85.46%</td>
<td></td>
</tr>
<tr>
<td>Getting the flu shot</td>
<td>16.96%</td>
<td>52.41%</td>
<td>30.63%</td>
</tr>
<tr>
<td>Exercising regularly</td>
<td>53.72%</td>
<td>30.46%</td>
<td>15.82%</td>
</tr>
<tr>
<td>Using antibiotics</td>
<td></td>
<td>75.80%</td>
<td>18.20%</td>
</tr>
</tbody>
</table>
Ineffective protective measures that were actually implemented
current wave survey 29.04.2020

Herbal supplements 89.34%
Taking food supplements 22.49% 77.51%
Ensuring a balanced diet 55.70% 44.30%
Using caution when opening packages 90.95%
Avoiding eating meat 93.23%
Getting the flu shot 16.32% 83.68%
Exercising regularly 48.53% 51.47%
Using antibiotics 90.82%

0% 25% 50% 75% 100%
Yes No
8.4. Pandemic Preparedness

Pandemic Preparedness
current wave 29.04.2020

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bought extra over the counter medications</td>
<td>89.91%</td>
</tr>
<tr>
<td>Bought or got extra prescription medications</td>
<td>90.58%</td>
</tr>
<tr>
<td>Bought extra medications that I take regularly</td>
<td>79.12%</td>
</tr>
<tr>
<td>Bought food supplies on large scales</td>
<td>88.61%</td>
</tr>
<tr>
<td>Bought disinfectant on large scales</td>
<td>85.39%</td>
</tr>
<tr>
<td>Avoided people coming from other countries</td>
<td>67.19%</td>
</tr>
<tr>
<td>(where coronavirus cases has occurred)</td>
<td>28.75%</td>
</tr>
<tr>
<td>Stayed away from social events I had planned to</td>
<td>73.93%</td>
</tr>
<tr>
<td>attend</td>
<td>19.87%</td>
</tr>
<tr>
<td>Avoided visiting family even when I did not have symptoms</td>
<td>61.06%</td>
</tr>
<tr>
<td>Asked family members or friends not to visit me</td>
<td>67.16%</td>
</tr>
<tr>
<td></td>
<td>13.67%</td>
</tr>
<tr>
<td></td>
<td>19.17%</td>
</tr>
</tbody>
</table>
9. Data by Demography

The following tables show variables for the current wave split according to key demographic characteristics of the respondents.

9.1. Age

<table>
<thead>
<tr>
<th>Administrative regions</th>
<th>18-29 years</th>
<th>30-49 years</th>
<th>50-64 years</th>
<th>65 and above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riyadh (n=1329)</td>
<td>67.94%</td>
<td>27.91%</td>
<td>3.83%</td>
<td>0.30%</td>
</tr>
<tr>
<td>Makkah (n=551)</td>
<td>68.96%</td>
<td>29.94%</td>
<td>1.08%</td>
<td>0%</td>
</tr>
<tr>
<td>Madinah (n=184)</td>
<td>74.45%</td>
<td>25%</td>
<td>0.54%</td>
<td>0%</td>
</tr>
<tr>
<td>Qassim (n=204)</td>
<td>74.50%</td>
<td>22.54%</td>
<td>2.45%</td>
<td>0.49%</td>
</tr>
<tr>
<td>Tabuk (n=67)</td>
<td>64.17%</td>
<td>34.32%</td>
<td>1.4%</td>
<td>0%</td>
</tr>
<tr>
<td>Northern Border (n=19)</td>
<td>78.94%</td>
<td>21.05%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Jawf (n=17)</td>
<td>76.47%</td>
<td>23.52%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Hail (n=56)</td>
<td>78.57%</td>
<td>19.64%</td>
<td>1.78%</td>
<td>0%</td>
</tr>
<tr>
<td>Baha (n=18)</td>
<td>72.22%</td>
<td>27.7%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Jizan (n=39)</td>
<td>56.41%</td>
<td>41.02%</td>
<td>2.56%</td>
<td>0%</td>
</tr>
<tr>
<td>Asir (n=80)</td>
<td>67.5%</td>
<td>31.25%</td>
<td>1.25%</td>
<td>0%</td>
</tr>
<tr>
<td>Najran (n=20)</td>
<td>60%</td>
<td>40%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Eastern Region (n=365)</td>
<td>64.93%</td>
<td>33.15%</td>
<td>1.91%</td>
<td>0%</td>
</tr>
</tbody>
</table>
9.2. Gender

<table>
<thead>
<tr>
<th>Administrative regions</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riyadh (n=1329)</td>
<td>52.44%</td>
<td>47.55%</td>
</tr>
<tr>
<td>Makkah (n=551)</td>
<td>54.49%</td>
<td>45.55%</td>
</tr>
<tr>
<td>Madinah (n=184)</td>
<td>46.73%</td>
<td>53.26%</td>
</tr>
<tr>
<td>Qassim (n=204)</td>
<td>59.80%</td>
<td>40.19%</td>
</tr>
<tr>
<td>Tabuk (n=67)</td>
<td>47.76%</td>
<td>52.23%</td>
</tr>
<tr>
<td>Northern Border (n=19)</td>
<td>57.89%</td>
<td>42.10%</td>
</tr>
<tr>
<td>Jawf (n=17)</td>
<td>29.41%</td>
<td>70.58%</td>
</tr>
<tr>
<td>Hail (n=56)</td>
<td>66.07%</td>
<td>33.92%</td>
</tr>
<tr>
<td>Baha (n=18)</td>
<td>38.88%</td>
<td>61.11%</td>
</tr>
<tr>
<td>Jizan (n=39)</td>
<td>46.15%</td>
<td>53.84%</td>
</tr>
<tr>
<td>Asir (n=80)</td>
<td>47.5%</td>
<td>52.5%</td>
</tr>
<tr>
<td>Najran (n=20)</td>
<td>20%</td>
<td>80%</td>
</tr>
<tr>
<td>Eastern Region (n=365)</td>
<td>43.01%</td>
<td>56.98%</td>
</tr>
</tbody>
</table>
9.3. Education

<table>
<thead>
<tr>
<th>Administrative regions</th>
<th>LH</th>
<th>H</th>
<th>ND</th>
<th>D</th>
<th>B</th>
<th>PG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riyadh (n=1329)</td>
<td>1.12%</td>
<td>23.10%</td>
<td>10.98%</td>
<td>6.99%</td>
<td>51.31%</td>
<td>6.47%</td>
</tr>
<tr>
<td>Makkah (n=551)</td>
<td>3.08%</td>
<td>20.87%</td>
<td>10.88%</td>
<td>5.98%</td>
<td>54.80%</td>
<td>4.35%</td>
</tr>
<tr>
<td>Madinah (n=184)</td>
<td>0.54%</td>
<td>21.19%</td>
<td>12.5%</td>
<td>10.86%</td>
<td>51.08%</td>
<td>3.80%</td>
</tr>
<tr>
<td>Qassim (n=204)</td>
<td>1.47%</td>
<td>22.54%</td>
<td>12.25%</td>
<td>6.37%</td>
<td>45.83%</td>
<td>3.43%</td>
</tr>
<tr>
<td>Tabuk (n=67)</td>
<td>1.49%</td>
<td>2.98%</td>
<td>11.94%</td>
<td>4.47%</td>
<td>55.22%</td>
<td>2.98%</td>
</tr>
<tr>
<td>Northern Border (n=19)</td>
<td>0%</td>
<td>15.78%</td>
<td>5.26%</td>
<td>10.52%</td>
<td>57.89%</td>
<td>10.52%</td>
</tr>
<tr>
<td>Jawf (n=17)</td>
<td>0%</td>
<td>17.64%</td>
<td>11.76%</td>
<td>0%</td>
<td>70.58%</td>
<td>0%</td>
</tr>
<tr>
<td>Hail (n=56)</td>
<td>0%</td>
<td>21.42%</td>
<td>7.14%</td>
<td>1.78%</td>
<td>66.07%</td>
<td>3.57%</td>
</tr>
<tr>
<td>Baha (n=18)</td>
<td>5.55%</td>
<td>22.22%</td>
<td>11.11%</td>
<td>11.11%</td>
<td>44.44%</td>
<td>5.55%</td>
</tr>
<tr>
<td>Jizan (n=39)</td>
<td>2.56%</td>
<td>7.69%</td>
<td>7.69%</td>
<td>5.12%</td>
<td>74.35%</td>
<td>2.56%</td>
</tr>
<tr>
<td>Asir (n=80)</td>
<td>0%</td>
<td>12.55%</td>
<td>11.25%</td>
<td>10%</td>
<td>61.25%</td>
<td>5%</td>
</tr>
<tr>
<td>Najran (n=20)</td>
<td>0%</td>
<td>10%</td>
<td>5%</td>
<td>15%</td>
<td>70%</td>
<td>0%</td>
</tr>
<tr>
<td>Eastern Region (n=365)</td>
<td>0.82%</td>
<td>17.26%</td>
<td>13.15%</td>
<td>13.97%</td>
<td>51.23%</td>
<td>3.56%</td>
</tr>
</tbody>
</table>

“LH” = Less than high school degree, “H” = High school degree, “ND” = Some college but no degree, “D” = Diploma degree, “B” = Bachelor degree, “PG” = Post-graduate degree
9.4. Type of housing

<table>
<thead>
<tr>
<th>Administrative regions</th>
<th>Type of housing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Riyadh (n=1329)</td>
<td>20.01%</td>
</tr>
<tr>
<td>Makkah (n=551)</td>
<td>57.16%</td>
</tr>
<tr>
<td>Madinah (n=184)</td>
<td>55.97%</td>
</tr>
<tr>
<td>Qassim (n=204)</td>
<td>11.27%</td>
</tr>
<tr>
<td>Tabuk (n=67)</td>
<td>38.80%</td>
</tr>
<tr>
<td>Northern Border (n=19)</td>
<td>21.05%</td>
</tr>
<tr>
<td>Jawf (n=17)</td>
<td>17.64%</td>
</tr>
<tr>
<td>Hail (n=56)</td>
<td>14.28%</td>
</tr>
<tr>
<td>Baha (n=18)</td>
<td>27.77%</td>
</tr>
<tr>
<td>Jizan (n=39)</td>
<td>46.15%</td>
</tr>
<tr>
<td>Asir (n=80)</td>
<td>23.75%</td>
</tr>
<tr>
<td>Najran (n=20)</td>
<td>40%</td>
</tr>
<tr>
<td>Eastern Region (n=365)</td>
<td>34.79%</td>
</tr>
</tbody>
</table>

10. **References:**

