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Abstract We describe a novel method of Bayesian inference for hierarchical or
non-hierarchical equal variance normal Signal Detection Theory models with
one or more criteria. The method is implemented as an open-source R pack-
age that uses the state-of-the-art Stan platform for sampling from posterior
distributions. Our method can accommodate binary responses as well as addi-
tional ratings and an arbitrary number of nested or crossed random grouping
factors. The SDT parameters can be regressed on additional predictors within
the same model via intermediate unconstrained parameters, and the model can
be extended by using automatically generated human-readable Stan code as a
template. In the paper we explain how our method improves on other similar
available methods, we give an overview of the package, demonstrate its use by
providing a real-study data analysis walk-through, and show that the model
successfully recovers known parameter values when fitted to simulated data.
We also demonstrate that ignoring a hierarchical data structure may lead to
severely biased estimates when fitting Signal Detection Theory models.
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1 Introduction

Many tasks used in psychology studies are essentially classification tasks. In
a memory study, for example, participants may be required to decide if a
given test item is old or new, or, in a perceptual study, an object may be
either a letter or a digit. If a task requires classification, it is always possible
that conclusions based on accuracy or percent correct are invalid because the
ability to discriminate between stimulus classes (i.e., sensitivity) is confounded
with bias, which is a tendency to classify stimuli as belonging to a particular
class. In principle, any effect that manifests itself in differences in classification
accuracy may reflect differences in sensitivity, bias, or both.

Signal Detection Theory (Peterson, Birdsall, & Fox, 1954; Tanner Jr &
Swets, 1954) provides a simple and popular solution to this common problem:
according to Google Scholar, the seminal book by Green and Swets (1966)
which introduced SDT to psychology researchers was cited more than 15,000
times before the year 2020. Despite the fact that the theory solves a com-
mon and important problem and is even described in cognitive psychology
handbooks, there are reasons to believe that it may be heavily underutilized
(Stanislaw & Todorov, 1992).

Because the SDT model is non-linear, variability in its parameters due to
factors such as participants or items has to be accounted for. When they are
not accounted for, e.g., by aggregating data across participants or items, the
estimates of SDT parameters are biased. As we explain later in this paper,
none of the available methods of inference for hierarchical SDT models that
we are aware of addresses this problem in its full generality, meaning that
none of the available methods allow for fixed and random effects in both the
sensitivity and the criteria parameters while restricting the parameters in ac-
cordance with SDT assumptions. Later in the paper we explain why, in our
view, the bhsdtr package for R (R Core Team, 2017), which we have made pub-
licly available at https://github.com/boryspaulewicz/bhsdtr, provides a
correct implementation of the general hierarchical linear regression structure
defined on SDT parameters. This package repository also contains the anno-
tated source code that was used to perform all the analyses and produce all
the figures presented in this paper.

In what follows, after introducing the most common version of the SDT
model, we describe its generalization, which can accommodate data from rat-
ing experiments. Note that our brief introduction to the SDT theory is meant
as a refresher – the reader interested in a more comprehensive treatment is
advised to consult any of the three most popular contemporary books on this
subject, i.e., McNicol (2005), Wickens (2002), or Macmillan and Creelman
(2004), listed here in order of increasing mathematical sophistication.

After describing the generalized SDT model we explain why, if a method
of inference for SDT models were to be of general use in psychology studies,
it is important that it is based on a model equipped with a correct hierar-
chical linear regression structure. The bhsdtr package meets this requirement
thanks to a novel parametrization; we describe this and explain how reliance
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on relatively standard parametrizations leads to problems in the three other
available implementations. We end the first part of this paper with a formal
definition of the model as implemented in bhsdtr. The second part contains
an overview of the package and a tutorial in which we demonstrate how to
use our method in practice, as well as a demonstration of bias resulting from
ignoring the effects of grouping factors.

2 Equal variance normal Signal Detection Theory model with
additional criteria

According to Signal Detection Theory, each stimulus in a classification task
gives rise, by some unspecified cognitive process, to a unidimensional internal
evidence value s sampled from a distribution that depends on the stimulus
class. For historical reasons the two stimulus classes are often referred to as
”noise” and ”signal”, and task performance is described in terms of hits (when
the participant responds ”signal” to signals), correct rejections (responding
”noise” to noise stimuli), omissions (responding ”noise” to signals), and false
alarms (responding ”signal” to noise stimuli), but this terminology is appro-
priate only when the model is applied to tasks that require detection, which
is far from always being the case. To emphasize the general applicability of
SDT models, we will use the classical terminology only at the beginning of
our paper, and later we will mostly talk about two arbitrary kinds or classes
of stimuli, indexed by the numbers 1 and 2.

In the most widely used version of the model, shown in Fig. 1, the two ev-
idence distributions are normal with the same variance, which is usually fixed
at unity to make the model identifiable. The distance d′ between the means
of the evidence distributions represents sensitivity. Because normal distribu-
tions are unbounded, s is always ambiguous, and so a criterion c placed on
the evidence axis has to be used to reach a binary decision. A participant is
assumed to decide that a stimulus belongs to the first class (e.g., an old item
or ‘’noise”)) if s < c , or that it belongs to the second class (e.g., a new item
or ‘’signal”) if s ≥ c. The location of the decision criterion may be interpreted
in terms of classification or response bias.
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Fig. 1: Equal-variance normal Signal Detection Theory model. The s axis represents the
evidence space; the leftmost (rightmost) density curve represents the distribution of internal
evidence for the noise (signal) stimuli (stimulus class 1 and 2, respectively); c is the decision
criterion, and the distance d′ between the distribution means represents sensitivity.

Perhaps the simplest way of using this model is to fit it to observed re-
sponse counts and use the estimated d′ values in place of the percent correct
(p(c)) scores; if the model is correct, the resulting performance measure is not
contaminated by bias. The model may not be correct, which in our view is
the most important reason to focus more on the generalized version shown in
Fig. 2 below.
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Fig. 2: Equal-variance normal Signal Detection Theory model with additional criteria. This
is the same model as in Fig. 1, but there is more than one criterion. The response y is
a single number that combines the binary classification decision and the rating. Larger y
values correspond to increasing certainty that the stimulus is of type ”signal” (stimulus class
2)

This generalized model is applicable to studies in which participants are
asked to rate their binary classification decisions on confidence or some other
performance- or stimulus-related dimension. The ratings and the binary clas-
sification decisions can be provided together (e.g., ”I am almost certain that
it was a digit”), or in an arbitrary order.

Ratings are accommodated by introducing additional criteria and mod-
elling a combined response y, which represents both the binary classification
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decision and rating as a single number. The value of y increases with the
strength of evidence in favor of the second stimulus class. For example, if con-
fidence is rated on a four-point scale, then y = 1 when a participant decides
that a stimulus belongs to the first class with certainty 4, and y = 5 when a
participant decides that a stimulus belongs to the second class with certainty
1. More formally, if K is the number of possible combined responses, then a
participant is assumed to give response k if s ∈ (ck−1, ck], where c are the
decision criteria, with c0 and cK fixed at −∞ and +∞ respectively.

There is a good reason to collect the ratings and use the generalized SDT
model from Fig. 2, even when neither the ratings nor the placement of criteria
are relevant to the research problem. When K = 2 (no ratings), the SDT
model fits perfectly (it is saturated), regardless of whether it is a reasonably
good approximation to reality, because the data and the model have the same
dimensionality. This makes the generalization to the K > 2 case particularly
important, as the formal assumptions of the model (e.g., equal or unequal
variance) can only be tested when K > 21.

The model is usually tested by comparing the empirical and the implied
Receiver Operating Characteristic (ROC) curves, which represent the rela-
tionship between the hit rate (p(H)), the false-alarm rate (p(F )) and d′. An
example of the empirical ROC curve is shown later in the paper (see for exam-
ple Fig. 6). Each curve in the implied ROC space represents all the possible
pairs of p(H) and p(F ) values that correspond to some unique d′ value. If the
observed points corresponding to the pairs of hit and false-alarm rates for the
same d′ value do not lie on the same implied isosensitivity curve, the distri-
butional assumptions may be false. This may be easier to see when using the
zROC plot, which shows the relationships between z(H) and z(F ), because the
z transform turns the original ROC curves into straight lines. In particular, if
the equal variance normal SDT model is true then all the zROC slopes equal
1.

A false SDT model cannot be trusted to serve its main purpose of decon-
founding sensitivity from bias and it is in fact not uncommon that results are
obtained that seem to falsify an SDT model; for example, the survey studies
by Swets (1986) and Swets and Pickett (1982) indicate that the slopes of em-
pirical zROC curves are often different from unity. That is why we believe that
the additional complexity introduced by collecting and modeling the ratings
is more than justified, unless – for some reason – it defies the purpose of the
study.

As we later explain, in a typical case there are also good reasons to compli-
cate the model even further by supplementing it with a regression structure.
When SDT models are used in psychology studies, researchers are usually
interested not in the values of the SDT parameters themselves but in the
relationships between SDT parameters and additional measured or manipu-
lated variables; a good example is the dependence of d′ on stimulus strength.

1 In contrast to the formal assumptions, a psychological interpretation of the SDT parameters can be
tested even when ratings are not available, e.g., by means of selective influence (Sternberg,
2001)
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Also, in a great majority of psychology studies in which classification tasks are
used, the data have a hierarchical structure, i.e., there are repeated measures
for each participant or item, and participants or items are only samples from
the target population. A general-purpose method of inference for SDT models
should accommodate both kinds of situations.

3 The importance of the correct hierarchical regression structure

If data have a hierarchical structure, but variability due to participants, items,
or other grouping factors is not accounted for, estimates of average (fixed)
effects are not guaranteed to be unbiased and conclusions are not guaranteed
to generalize to the target population.

The not uncommon practice of analyzing data aggregated over grouping
factors represents an extreme case of ignoring hierarchical data structure. The
invalidity of this approach in the context of SDT was clearly illustrated with
the results of simulational studies by Morey, Pratte, and Rouder (2008); how-
ever, strictly speaking, such demonstrations are irrelevant to proving the in-
validity in question. Because SDT is a non-linear model, by definition, when
estimates of its parameters are based on data aggregated over sampled fac-
tors – e.g., d′ estimated for hits and false alarms averaged over participants
or items – the expected values of these estimates (e.g., what the calculated
d′ actually estimates) are not in general true population averages (true d′

in some condition). In fact, such estimates are asymptotically biased, which
means that increasing the sample size will not make the bias disappear and
any inference about a target population based on such estimates is simply
not valid. To give a concrete example, consider two unbiased participants, one
with d′1 = 2 and one with d′2 = 4. Their expected average accuracy is given by
(Φ(d′1/2) + Φ(d′2/2))/2 = .91, which corresponds to d′ = 2.68, whereas their
true average d′ is 3.

Aggregating data over grouping factors leads to two kinds of estimate bias.
One is a bias in point estimates of d′ and c parameters, as illustrated by the last
example. The other is a bias in interval estimates. Ignoring a hierarchical data
structure in an SDT analysis is analogous to using a fixed effects ANOVA for
repeated measures data, which is a major violation of the modeling assump-
tions. When a hierarchical data structure is ignored, the data are no longer
independent given the model because the data points for the same level of a
grouping factor are informative about each other. For the same reason, it is
important to model the random effects’ correlations when these may be non-
negligible. In the worst case, because of non-linearity the point estimates will
systematically differ from the true values and, because the variability is un-
derestimated, the interval estimates will be too narrow, leading to conclusions
that are both invalid and apparently strongly supported by the data.

Except for toy examples like the one we have described eariler, we are not
able to say much about the estimate bias magnitude for the d′ or c param-
eters in quantitative terms because predicting estimate bias magnitude is in
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general a difficult problem. However, using a real dataset we will demonstrate
later in the paper how overly aggregating the data may easily lead to invalid
conclusions.

As we repeatedly stress in this paper, aggregation is not the only way of
ignoring a hierarchical data structure. Sometimes non-aggregated data are an-
alyzed by using separate estimates for every participant × item × condition
combination, but uncertainty due to distributions of participant or item ef-
fects is not accounted for by means of a hierarchical model structure. In such
cases, conclusions – at least with respect to the uncertainties in estimates of
population-average (fixed) effects – are guaranteed to be valid only for the
given sample, not the target population.

Furthermore, when the SDT parameters are estimated separately for each
participant and condition, and only later regressed on predictors of interest, a
number of additional issues may arise. Firstly, the standard errors or credible
intervals associated with the regression coefficients do not reflect the uncer-
tainty in the SDT parameter estimates because the latter are treated as mere
data points. The precision of parameter estimates often varies between par-
ticipants, items, or conditions, but when the estimates are treated as data
points, no use is made of this information. Secondly, regressing parameters on
numeric predictors makes their estimates dependent on the common regres-
sion structure, and so also on each other, which can improve the quality of the
estimates, just as assuming that random effects are samples from a common
distribution may improve their estimates.

The three most popular contemporary books on SDT modeling that we
have mentioned in the introduction differ in how much emphasis their authors
place on the issue of point and interval estimate bias. For example, McNicol
(2005) notes that the d′ estimates based on aggregated hit and false-alarm
rates are biased and recommends aggregating the z transformed rates: this
does solve the problem of bias in point (but not interval) estimates of group
average d′ and c in the binary classification case, but not when the ratings
are collected; it also does little in the way of accounting for the uncertainty
associated with the distribution of (and correlation between) random effects,
since this latter problem can only be solved by supplementing an SDT model
with a hierarchical regression structure.

Although almost every example of SDT analysis that Macmillan and Creel-
man (2004) consider in their book is based on data aggregated over partici-
pants, they do provide an analysis of estimate bias based on the results ob-
tained by Macmillan and Kaplan (1985) and Hautus (1997). However, this
analysis is restricted to a simple case of a small number of participants and no
regression structure, which, as the authors themselves admit, is a limited sce-
nario. When considering more realistic situations in which the effects in d′ or
c are estimated, the authors recommend using a generalized linear regression
modeling framework, as described by DeCarlo (1998).

Wickens (2002) seems to be the only of these books that emphasizes both
the point estimate bias and the interval estimate bias resulting both from
averaging and from separating the hierarchical regression analysis from SDT
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model fitting. Wickens also shows that that the latter kind of bias may be
severe in certain simple situations.

4 Hierarchical Signal Detection Theory in a constrained parameter
space

Both d′ and c have the virtue of being directly interpretable in terms of sensi-
tivity and bias. However, when there is more than one criterion, the elements
of the c vector are order restricted (ci+1 > ci) and d′ is assumed to be non-
negative.

The non-negativity of d′ seems to deserve some explanation, since the au-
thors who write about SDT models differ in how clear they are on this issue.
For example, Macmillan and Creelman (2004) state this assumption explicitly,
Wickens (2002) describes d′ as a measure of distance and, when considering
negative d′ values, interprets them as arising from sampling error or response
reversal, whereas, to our knowledge, McNicol (2005) does not discuss the pos-
sibility of negative d′ values at all.

In Signal Detection Theory d′ is a measure of distance and as such is a
non-negative quantity by definition (Luce, 1963). Usually, the true negative d′

values are not like non-negative d′ values only smaller – they are qualitatively
different. To see why, observe that participants in a typical study cannot per-
form the task below chance level unless – for some reason which is outside
the scope of the SDT model, such as misunderstanding the task instructions
– they reverse their responses. Consequently, it makes no sense to say that
d′ = −1 represents a sensitivity which is lower by two standard deviations
than the sensitivity represented by d′ = 1. A more natural interpretation is
that in both cases the sensitivity is exactly the same, and there is some other
reason, such as response reversal, for the difference in sign.

Macmillan and Creelman (2004) as well as Wickens (2002) seem to agree
that the most common reason why negative d′ values are observed is that
some participants have true near-zero positive d′ and their observed hit rates
are lower than their observed false alarm rates purely because of the sampling
error. However, the prior on d′ as well as the distribution of d′ random effects
represent the uncertainty in the true d′ values, whereas the sampling error is
handled by the distributional assumptions of the SDT model itself.

If the reason that the negative d′ values are observed is either sampling
error or response reversal in a small number of participants, then the normal
prior on d′ does not correctly express this possibility because normal prior on
d′ represents the assumption that there is a natural continuity of true d′ val-
ues that extend below and above zero. A more appropriate way to model rare
cases of response reversal would be to represent random d′ effects as an uneven
(assuming response reversal is an exception) mixture of two distributions of
participants, which are essentially the same except that for one of the distri-
butions the values of the response variable are reversed. On the other hand,
in some situations true negative d′ values may even be common; for example,



The bhsdtr package 9

certain experimental conditions may systematically cause the participants to
reverse their responses, but these are special cases which require special treat-
ment; in particular, such situations call for a non-trivial generalization of the
SDT model.

Since, due to the sampling error, p(H) < p(F ) is not impossible for an
arbitrary true negative d′ value, an unbounded prior on d′ inevitably forces the
posterior distribution to have a non-zero mass on the negative d′ values. This
makes all the posterior samples of all the model parameters that correspond to
the negative posterior d′ samples problematic. Whether this is an important
problem in a particular case depends on a number of factors, the main two
being how informative the data are about the true d′ value and how close
the true d′ is to 0. Regardless of how large the dataset is as a whole, when
there is substantial variability in d′ or d′ effects between the participants, the
participant-specific estimates become the data points since the fixed effects
are estimated as averages of random effects, and the number of participants
is often much more limited than the number of raw data points that can be
collected; This limits the amount of information available in typical datasets.
Using a truncated normal distribution as a prior for d′ does not solve this
problem either because it does not allow for unbounded fixed and random
effects; we are also not aware of any reason why the true d′ random effects
could be approximated well by a truncated normal distribution.

All this leads to the conclusion that the constraints on d′ (positivity) are
as important as the constraints on c (ordering), but these constraints make it
impossible to supplement an SDT model with a hierarchical linear structure.
Such a structure can only be defined on unconstrained parameters because
in hierarchical linear regression 1) random effects are assumed to be normally
distributed and normal distribution is unbounded, and 2) effects such as differ-
ences between conditions or regression slopes are allowed to assume arbitrary
real values. The only way to solve this problem is to re-parametrize the model
so that the parameters are no longer constrained, but the model is essentially
the same.

5 Limitations of available implementations of hierarchical SDT
models with ratings

In the following summary of two hierarchical SDT implementations, we pro-
vide examples of the problems that may arise when the SDT model is not
correctly reparametrized. One is the Gibbs sampler proposed by Morey et al.
(2008) and the other is the Hierarchical Meta-d′ model (HMeta-d′) proposed
by Fleming (2017). After describing the problems associated with those two
software implementations, we will briefly explain how our method compares
to what the brms package has to offer.

The HMeta-d′ model is a hierarchical version of the meta-d′ model (Maniscalco
& Lau, 2012), which in turn is a generalization of the SDT model that allows
for a separate ”meta-sensitivity” to account for possible discrepancies between
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a binary stimulus classification (referred to as a type 1 task) and the associ-
ated rating task (referred to as a type 2 or meta-cognitive task). We consider
HMeta-d′ here because it reduces to an SDT model with ratings when the type
1 and type 2 sensitivities are equal.

The Gibbs sampler created by Morey et al. (2008) allows for at most two
grouping factors to have independent normally distributed random effects on
the evidence distribution means. Unlike d′, each evidence distribution mean
considered in isolation is an unconstrained parameter, but the mean of the
second evidence distribution is by definition greater than (d′ > 0) or equal
to (d′ = 0) the mean of the first. The authors explicitly admit that their
model does not enforce this restriction because, as they claim in the paper, it
would greatly complicate analysis. The outermost criteria are fixed at 0 and
1, and the ordering restriction is enforced by assuming that the likelihood is
0 whenever ci+1 ≤ ci. As the authors explain, because a grouping factor can
have independent random effects on the evidence distribution means, it can
have an effect on all the criteria: shifting both means by the same amount in the
same direction is equivalent to keeping the sensitivity intact, while shifting the
criteria relative to the evidence distributions. However, the individual elements
of the criteria vector cannot be affected differently by the same grouping factor.

In HMeta-d′ the hierarchical structure is limited to normally distributed
random intercepts of one grouping factor. In this model the d′ parameter is
also allowed to assume negative values, but the most problematic aspect of
this implementation is again the representation of the criteria. For reasons
that are outside the scope of this paper, in the HMeta-d′ model the main
criterion is interpreted as qualitatively different from the rest of the criteria.
The main criterion, as a random effect, is assumed to be a sample from a
normal distribution, whereas the criteria above (below) the main criterion are
assumed to be samples from a normal distribution which is bounded below
(above) by the value of the main criterion. The mean of the distribution of
the upper criteria random effects is the same as the mean of the lower criteria
random effects, only the sign is reversed. These unordered ”proto-criteria” are
sorted to obtain the actual criteria values, but because sorting is not injective
the space of the actual criteria is only loosely related (i.e., not isomorphic)
to the space of the unrestricted criteria vectors that are associated with the
hierarchical structure. In this way the HMeta-d′ model enforces some but not
all the necessary order constraints, and it only accounts in a limited way for
the variability in the criteria due to the grouping factors.

Some extensions of the SDT model can be fitted correctly using the ex-
cellent brms package, as described in Bürkner (2017). The brms package is a
flexible tool that shares some deep design similarities with our method. Both
our package and brms belong to a growing family of software tools that aim
to provide a somewhat simplified and domain- or application-specific interface
for one of the general purpose Bayesian inference engines, in this case the Stan
modelling language (Carpenter et al., 2016). The brms is a highly flexible, well-
documented package that offers an elegant interface for fitting a large class of
hierarchical models. Among the models that can be fitted using this package
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are the ordinal regression models. The hierarchical SDT model with ratings is
essentially a generalization of hierarchical ordinal regression since ratings are
an ordinal-scale variable.

However, that does not mean that a general hierarchical SDT model with
ratings can be fitted using the brms package. There are three categorical dis-
tributions available at present in brms, each with its own set of link functions:
the cumulative model, the adjacent category model and the sequential model.
As the author of the package explains (Bürkner, 2017), the only model that
respects the ordering of the thresholds is the cumulative model, but in the
cumulative model – just like in the Morey et al. (2008) model – the predic-
tors can only have constant effects across categories. Moreover, just like in the
other two implementations, in the cumulative model d′ is unbounded.

None of the three available methods that we consider here forces the d′

parameter to be non-negative. The brms package is the only one of the three
methods that allows for an arbitrary hierarchical linear regression structure
with possibly correlated random effects in an SDT model with ratings. The
Morey et al. (2008) model allows for at most two grouping factors, but it
cannot account for random effects’ correlations. The HMeta-d′ model allows
for at most one grouping factor, but it can only be associated with variability
in the intercept, which means that the within-subject (or within-item) effects
cannot be modeled at all out of the box.

If a participant has one criterion shifted to the right, the criterion above
it will usually also be shifted to the right, and so random effects in criteria
are likely to be strongly correlated. Lastly, none of the three methods are able
to account for the fact that participants or items may differ not only in by
how much and in what direction all of their criteria are shifted relative to the
population mean, but also in the relative positions of individual criteria; In
the cumulative model as implemented in the brms package and in the Morey
et al. (2008) model, random criteria effects are constant across categories. In
the HMeta-d′ model the variability in the criteria due to the grouping factors
seems to be reduced to the average distance of the unordered proto-criteria
from the middle criterion. It follows that when an SDT model is fitted to the
data from a rating experiment, the data cannot be assumed to be independent
given any of the three models. As pointed out by Wickens (2002), violation
of the assumption of the independence of data given the model may lead to
severely biased interval estimates.

Note that the estimates of the SDT parameters are interdependent , mean-
ing that point or interval estimate bias in one parameter may lead to point or
interval estimate bias in all the other parameters. Conversely, if an estimate of
one parameter is improved, the estimates of the other parameters may improve
as well. In the three available methods of fitting hierarchical SDT models with
ratings discussed so far, there are independent reasons for point or interval
estimate bias in every SDT parameter considered in isolation. Such biases are
difficult to predict theoretically and difficult to detect because obtaining em-
pirical evidence of their existence or magnitude is only possible when the true
model is known.
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We should clarify that not all forms of bias are absent when using the
SDT model as implemented in the bhsdtr package. In a Bayesian model the
posterior distribution is influenced by the data and the priors, and the prior-
induced bias is often unavoidable. Since in the bhsdtr package the default
priors are weakly informative, they may have a non-negligible impact when
the number of data points is small and the variance of the priors is not large.
Another concern is that when the true d′ values are near-zero, our model
will automatically infer that the true d′ value is non-negative, thus discarding
part of the error, but only the negative part. On the other hand, if the true
d′ is zero, given enough data the Highest Posterior Density (HPD) interval
estimates can be expected to include zero. This is also an efficient solution,
given the positivity assumption, since it only discards part of the error, and
we see no reason why it would eliminate the asymptotic unbiasedness. This
feature also does not preclude the researcher from choosing a prior that favors
the near-zero values. When the positivity assumption is acceptable, which
usually seems to be the case according to Wickens (2002) and Macmillan and
Creelman (2004), the alternative leads to the problems that we have already
described. In any case, whenever there is reason to believe that the chosen
priors lead to misleading conclusions, the researcher can perform a sensitivity
analysis.

6 Hierarchical Signal Detection Theory in an unconstrained
parameter space

The general hierarchical linear regression structure can be defined on SDT
parameters only if the latter are derived from unconstrained parameters. In the
bhsdtr package, d′ is derived from δ = ln(d′), thus random effects on d′ can be
modelled by assuming that δ is normally distributed. Modeling the logarithm
of d′ has an additional advantage: as noted by Macmillan and Creelman (2004),
d′ has ratio-scaling properties and it makes sense to say that one d′ value is
twice as large as another. Because both d′ and δ have a natural interpretation
in terms of the differences in sensitivity but they are related by a non-linear
transformation, inspecting both the d′ values and the δ values may reveal that
an interactive effect is illusory2.

The problem of representing the criteria by unconstrained parameters can
be solved by mapping the RK−1 space of unconstrained criteria vectors to
the K dimensional probability simplex space using the softmax function, and
mapping the simplex space to the space of order-restricted criteria vectors by
means of the inverse normal CDF:

2 Whenever a nonzero additive effect is observed on the original (logarithmic) scale of the dependent
variable, it will look like an interaction on the logarithmic (original) scale. In such cases
the effect of one variable can be predicted without knowledge of the other variable, and the
observed interaction may be illusory.
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ci = Φ−1(

i∑

k=1

(eγk)/

K∑

j=1

(eγj )) (1)

where Φ is the CDF of the standard normal distribution and γ ∈ RK , with
γK fixed at 0 for identifiability. The idea is illustrated in Fig. 3 below:

c1 c2 c3 c4 c5 c6 c7
s

mapping distribution f

evidence distributions p(s|stim)

γ2 = ln

(∫ c2

c1
f(s) ds∫ ∞

c7
f(s) ds

)

γ2 γ8 = 0

Fig. 3: Mapping between the unconstrained γ vector and the criteria. The dashed lines
represent the SDT model with additional criteria; the distribution in the middle is the
mapping distribution used to translate between the γ and the c vectors.

Note that the normal distribution centered at the midpoint is merely a
mapping device, not a third evidence distribution, and that, for reasons that
will soon become clear, it is wider than the two evidence distributions. The
mapping expressed by Eq. 1 is an isomorphism between the RK−1 space and
the space of order-restricted criteria vectors. Its inverse is given by γi =
ln (

∫ ci
ci−1

f(s) ds/
∫∞
cK−1

f(s) ds), where f is the standard normal probability

density function. The elements of the γ vector correspond to relative distances
between pairs of adjacent criteria because their exponents represent the rela-
tive magnitudes of areas under the standard normal curve, delineated by the
pairs of adjacent criteria: eγi/eγj = (Φ(ci)−Φ(ci−1))/(Φ(cj)−Φ(cj−1)). When
K = 2, only γ1 is free to vary, and its value directly represents the direction
and magnitude of bias: γ1 is 0 when the criterion is placed at the midpoint be-
tween the evidence distributions; the more negative (positive) γ1 is, the more
the criterion is shifted to the left (right) of the midpoint.

In our model it is often a good idea to multiply all the criteria by a value
greater than 1, which is equivalent to making the mapping distribution wider.
This tends to even out values of γ by preventing the outermost areas under the
mapping distribution curve from becoming very small relative to areas delin-
eated by adjacent pairs of non-outermost criteria. This is especially important
when the criteria are widely spread, as can happen for moderate to large d′

values. This feature is implemented in the bhsdtr package by introducing a
scaling factor.
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Once d′ and c are derived from the unconstrained δ and γ parameters, the
SDT model can be supplemented with a hierarchical linear regression struc-
ture. To avoid having to deal with an even more complicated index notation3,
below we present only the simple case of one grouping factor.

δ = X(δ)β(δ) +Z(δ)θ(δ)

d′i = eδi

γi,· = X
(γ)
i,· β

(γ) +Z
(γ)
i,· θ

(γ)

ci,k = s Φ−1(

k∑

l=1

(eγi,l)/

K∑

m=1

(eγi,m))

p(yi = k|stimi = 1) = Φ(ci,k + d′i/2)− Φ(ci,k−1 + d′i/2)

p(yi = k|stimi = 2) = Φ(ci,k − d′i/2)− Φ(ci,k−1 − d′i/2)

Here i = 1 . . . N is the observation number, X is the fixed effects model
matrix for the respective parameter, Z is the random effects model matrix,
β and θ are the fixed and random effects, c is an N × K − 1 matrix, s is
the criteria scaling factor, and y is the combined response. Note that d′i is a
scalar, but γi,· is in general a vector, and so β(γ) and θ(γ) are matrices. The
j-th rows of the β(γ) and θ(γ) matrices represent fixed and random effects on
the j-th element of the γ vector.

Following Sorensen and Vasishth (2015), we make use of the Cholesky
decomposition of the correlation matrices because it improves efficiency and
admits a convenient prior on random effects correlations:

vectorized(θ(γ)) = diag(τ (γ))L(γ)z(γ)

θ(δ) = diag(τ (δ))L(δ)z(δ)

z
(δ)
i ∼ Normal(0, 1)

z
(γ)
j ∼ Normal(0, 1)

where each τ is a vector of standard deviations of random effects and
each L is a Cholesky decomposition of a random effects correlation matrix,
i.e., C = LL′. Thus, θ is multivariate normal with the covariance matrix
diag(τ )L.

Finally, as recommended by Gelman et al. (2006), we use weakly infor-
mative proper priors because they provide regularization and help stabilize
computation. The fixed effects β(δ) and β(γ) are given independent normal
priors, the random effects standard deviations τ (δ) and τ (γ) are given inde-
pendent half-Cauchy priors, and each L is given an independent lkj prior:

3 The reader familiar with hierarchical models may be surprised by our use of superscript parenthe-
sized Greek letters to express hierarchical relationships. We chose this convention because
it allowed us to use subscripts to denote elements of vectors and matrices while minimizing
the number of nested sub- or superscripts.
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β
(δ)
i ∼ Normal(µ

(δ)
i ,σ

(δ)
i )

β
(γ)
k,l ∼ Normal(µ

(γ)
k,l ,σ

(γ)
k,l )

τ
(δ)
i ∼ half-Cauchy(0, ζ

(δ)
i )

τ
(γ)
k,l ∼ half-Cauchy(0, ζ

(γ)
k,l )

L(δ) ∼ lkj(ν(δ))

L(γ) ∼ lkj(ν(γ))

7 Specifying the prior distributions

A Bayesian model is not complete without providing fixed values of all the
parameters that define prior distributions. Specifying the priors on sensitivity
effects does not pose any special difficulties. The sensitivity of an unbiased
classifier given percent correct is given by 2Φ−1(p(c)). When p(stim = 1) =
.5, the greater the bias, the lower the accuracy, meaning that an unbiased
sensitivity is a lower bound on sensitivity given percent correct. Let us assume
that the majority of participants are expected to achieve percent correct within
the .51 to .99 range, with negligible bias. Since ln(2Φ−1(.51)) = −2.99 and
ln(2Φ−1(.99)) = 1.54, a reasonable weakly informative prior on δ is normal
with mean (1.54 − 2.99)/2 and standard deviation (1.54 + 2.99)/2, which is
the default prior on delta effects in the bhsdtr package.

Specifying the priors on criteria effects can be challenging because the
criteria are order-restricted. On the other hand, specifying the priors on γ
effects is challenging because of the complexity of the mapping expressed
by Eq. 1. In our view this is a major limitation of our implementation and
we are currently working on improving it. By default, in the bhsdtr package
each entry in the σ(γ) and ζ(γ) matrices is set to ln(100) and the criteria
scaling factor is fixed at 2. The prior on random effects’ standard deviations
are parametrized by ζ, which represents half-width at half-maximum of the
half-Cauchy distribution. In our opinion, a not unreasonable starting point is
to set ζ at a value that is greater than or equal to the most likely value of the
random effects’ standard deviation.

Finally, by default ν(δ) = ν(γ) = 1, which implies a uniform prior on
random effects’ correlation matrices. Because the greater the value of ν, the
more emphasis is put on zero off-diagonal correlations, the researcher can force
the correlations to be near-zero by choosing a large ν value.

8 Overview of the software implementation

The bhsdtr package implements the model described in the previous section in
the Stan modelling language because it uses a state-of-the-art adaptive Hamil-
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tonian Monte Carlo sampling algorithm which often handles high-dimensional
correlated posteriors better than a Gibbs sampler.

Our package is essentially a collection of documented functions: The aggregate responses

function aggregates data as much as possible for efficiency, but without distort-
ing the hierarchical structure. The make stan model function creates a model
definition in the Stan language. The Stan code produced by the make stan model

function can be fitted as is or modified by the user if needed, e.g., to change the
prior distributions or to drop the equal variance assumption. The make stan data

function creates regression model matrices and other data structures required
by the model created using the make stan model function. Finally, the plot sdt fit

function can be used to visually assess the fit of the model by creating publication-
ready ROC curve plots or response distribution plots with posterior predictive
intervals calculated for the chosen α level.

9 Usage example: installing the package and testing the model on
real data

To make full use of the bhsdtr package functionality, three non-standard R
packages are required, namely rstan, plyr, and ggplot2. We recommend us-
ing the devtools package to install the bhsdtr package directly from the
github repository. This will automatically install any missing required pack-
ages:

d ev too l s : : i n s t a l l g i t ( ’ g i t : // github . com/ boryspaulewicz / bhsdtr ’ )
l i b r a r y ( bhsdtr )

The essential steps of a typical data analysis process will usually involve
preparing the data, creating the model code, fitting the model, assessing the
fit, and possibly converting the unconstrained δ and γ parameters to d′ and c.

10 Preparing the data

The bhsdtr package contains a dataset, gabor, from an unpublished study in
which on each trial the participants had to classify a briefly presented Gabor
patch as tilted to the left or to the right using the arrow keys. The participants
were also asked to rate the stimuli on a 4-point Perceptual Awareness Scale
(Ramsøy & Overgaard, 2004) presented at the bottom of the screen. The
Gabor patch was immediately followed by a mask. The PAS ratings ranged
from ”no experience” to ”absolutely clear image” and were provided either
before (RATING-DECISION order condition) or after (DECISION-RATING
order condition) the arrow keys were pressed. On each trial the Gabor patch
was equally likely to be presented for 32 ms or 64 ms. Order was a between-
subject variable and duration was a within-subject variable. There were 47
participants and 48 trials per condition.
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In the study in question, the response was originally encoded using separate
variables for accuracy and rating, so the first step was to create an appropri-
ate response variable using the combined response function. This function
requires three variables, one encoding the stimulus class, one encoding the
rating (as an integer), and one binary variable encoding the decision accuracy.

gabor$resp = combined response ( gabor$stim ,
gabor$rat ing ,
gabor$acc )

This step is required only if the ratings are available and a combined re-
sponse variable is not already present in the data. In the single criterion case,
the combined response variable is simply the binary classification decision. To
fit a single-criterion SDT model to this dataset, the code above would have to
be replaced with the following:

gabor$resp = combined response ( gabor$stim ,
accuracy = gabor$acc )

Next, the data has to be aggregated using the aggregate responses func-
tion, but only to an extent that preserves all the random effects. This function
requires as arguments a data frame containing all the relevant variables, the
name of the stimulus class variable, the name of the combined response vari-
able, and the vector of the names of all the variables that are to be preserved
in the resulting aggregated dataset (apart from the stimulus class variable and
the combined response variable), i.e., those encoding the grouping factors and
those representing the independent variables used in the regression part of the
model:

adata = a g g r e g a t e r e s p o n s e s ( gabor , ’ stim ’ , ’ resp ’ ,
c ( ’ id ’ , ’ durat ion ’ , ’ order ’ ) )

The main purpose of the aggregation step is to improve the efficiency of
sampling from the posterior distribution. When data are aggregated in this
way, the likelihood for each condition × participant combination has to be
computed only once rather than as many times as there are trials per condition
per participant. Note that if there are other grouping factors present in the
data (e.g., items, replications, etc.), and the user decides to model the effects
of these factors, then these factors have to be specified at this stage to preserve
the hierarchical data structure. The aggregate responses function creates a
list with three components. The data component is a data frame containing
additional preserved variables, the stimulus component is the stimulus class
variable. and the counts component is an N×K matrix of combined response
counts, where N is the number of data points and K is the number of possible
combined response values.
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11 Creating the model code

A model is fitted using the stan function from the rstan package. The stan

function returns a stanfit object, which can be used to obtain the summary
statistics or the posterior samples as described in the rstan package docu-
mentation. This function requires a special list of data structures used by the
model as well as a model specification expressed in the Stan language.

Every model has some fixed effects structure since, even when there are no
predictors, the model parameters can be expressed as regressed on a vector
of ones (i.e., an intercept). However, many models also have a hierarchical
structure and, if that is the case, this hierarchical structure has to be specified
when using the make stan model function. This is done by providing a list
of lists of R model formulae. Each list of model formulae is composed of at
least three elements and specifies the correlated random effects of one grouping
factor. The group element specifies the sampled factor; the delta and gamma

elements specify which effects are assumed to vary between the levels of this
sampled factor. When make stan model is used without any arguments, it
specifies a model without any random effects. Fixed effects model matrices are
specified by providing a list with at least two model formulae, named delta

and gamma, to the make stan data function that is described later in this
paper. Non-default priors can be specified by adding optional elements to the
random and fixed effects specification lists, as described in the make stan data

function documentation.
In the study in question there was only one grouping factor, i.e., the par-

ticipants. Because duration was a within-subject variable, in principle its ef-
fect could vary between the participants for all the SDT parameters. How-
ever, a preliminary data analysis indicated that the 32 ms difference in dura-
tion seemed to affect only the sensitivity. Thus, it was assumed that δ may
depend on duration and order (delta = ∼ -1 + duration:order), but γ
may only be affected by order (gamma = ∼ order). Because duration was a
within-subjects variable, its effect on δ was assumed to vary between the par-
ticipants (group = ∼ id [...] delta = ∼ -1 + duration), but the only
random effect associated with γ was the participant specific intercept (group
= ∼ id [...] gamma = ∼ 1):

f i x e d = l i s t ( d e l t a = ˜ −1 + durat ion : order ,
gamma = ˜ order )

random = l i s t ( l i s t ( group = ˜ id ,
d e l t a = ˜ −1 + durat ion ,
gamma = ˜ 1) )

model = make stan model ( random )

The make stan data function creates fixed and random effect model ma-
trices based on the respective model formulae using dummy contrast coding.
Note that the implicit intercept was suppressed for the δ model matrix (the
-1 term on the right-hand side of the model formula). In this way, δ was esti-
mated for every duration × order condition. The resulting separate intercepts
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and slopes parametrization makes it easier to calculate arbitrary contrasts on
posterior samples. A more standard parametrization was used for the γ param-
eter because it was initially assumed that the criteria depend only on order,
and so there was only one contrast of interest for every element of the γ vector.
On the other hand, in such cases nested parametrization (with separate inter-
cepts and slopes for every condition) may be more convenient if a researcher is
interested in the actual criteria, as we will later explain when introducing the
gamma to crit function. This example also illustrates how the separation of
the δ and γ regression structures makes it possible to test a broad class of lin-
ear models representing the dependence of the SDT parameters on additional
variables.

12 Fitting the model

In order to fit the model, a separate data structure used by the Stan sam-
pler has to be created using the make stan data function. The obligatory
arguments to this function are an aggregated data object created by the
aggregate responses function and a fixed effects’ specification. Importantly,
if random effects are modelled, the same specification of random effects has to
be provided to the make stan model and make stan data functions.

sdata = make stan data ( adata , f i xed , random )
f i t = stan ( model code = model ,

data = sdata ,
pars = c ( ’ d e l t a f i x e d ’ , ’ gamma fixed ’ ,

’ d e l t a s d 1 ’ , ’ gamma sd 1 ’ ,
’ delta random 1 ’ , ’ gamma random 1 ’ ,
’ Cor r de l ta 1 ’ , ’ Corr gamma 1 ’ ,
’ counts new ’ ) ,

i t e r = 8000 ,
cha ins = 4)

Note that since more than one grouping factor is allowed, the names of all
the hierarchical parameters are indexed (e.g., delta sd 1, delta random 1,
Corr delta 1). The name counts new refers to posterior predictive samples
that are required by the plot sdt fit function. Names starting with Corr re-
fer to random effects correlation matrices, which are computed from Cholesky
decompositions.

13 Assessing the model fit

As can be seen in the previous code fragment, four chains of 8,000 iterations
each were run simultaneously; the first half of the posterior samples, which
served as a warm-up period for tuning the parameters of the sampling algo-
rithm, was discarded. Part of the resulting Stan output is presented in Table 1
below.
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Table 1: Model fit summary statistics. This is part of the table that was obtained using
the summary function from the rstan package on the stanfit object produced by the stan

function.

mean SEmean SD 2.5% 97.5% No. eff. samples R̂
delta fixed[1] -0.11 0.00 0.15 -0.42 0.17 4339 1.00
delta fixed[2] 1.12 0.00 0.09 0.94 1.29 4327 1.00
delta fixed[3] -0.39 0.00 0.20 -0.79 -0.03 5615 1.00
delta fixed[4] 1.28 0.00 0.11 1.07 1.49 5417 1.00

gamma fixed[1,1] -0.14 0.00 0.06 -0.27 -0.02 3982 1.00
gamma fixed[1,2] -0.22 0.00 0.11 -0.43 -0.01 7356 1.00
gamma fixed[2,1] -0.70 0.00 0.18 -1.06 -0.36 3438 1.00
gamma fixed[2,2] 0.49 0.00 0.29 -0.08 1.06 3845 1.00
gamma fixed[3,1] -0.54 0.00 0.22 -0.96 -0.11 3385 1.00
gamma fixed[3,2] 0.83 0.01 0.35 0.14 1.51 3381 1.00
gamma fixed[4,1] 0.28 0.00 0.25 -0.20 0.77 3143 1.00
gamma fixed[4,2] 0.41 0.01 0.40 -0.39 1.20 3299 1.00
gamma fixed[5,1] -0.21 0.01 0.30 -0.79 0.38 3521 1.00
gamma fixed[5,2] 0.82 0.01 0.49 -0.14 1.78 3596 1.00
gamma fixed[6,1] -0.78 0.00 0.24 -1.25 -0.30 3521 1.00
gamma fixed[6,2] 0.80 0.01 0.39 0.03 1.57 3461 1.00
gamma fixed[7,1] -0.32 0.00 0.17 -0.65 0.01 3804 1.00
gamma fixed[7,2] 0.43 0.00 0.28 -0.12 0.97 4138 1.00

delta sd 1[1] 0.66 0.00 0.11 0.48 0.91 6078 1.00
delta sd 1[2] 0.44 0.00 0.06 0.34 0.56 5500 1.00

gamma sd 1[1] 0.16 0.00 0.07 0.02 0.32 2723 1.00
gamma sd 1[2] 0.82 0.00 0.11 0.63 1.07 6362 1.00
gamma sd 1[3] 1.08 0.00 0.12 0.86 1.33 4776 1.00
gamma sd 1[4] 1.27 0.00 0.14 1.03 1.57 4430 1.00
gamma sd 1[5] 1.55 0.00 0.17 1.26 1.91 4616 1.00

. . . . . . . . . . . . . . . . . . . . . . . .

Given the complexity of the model, the chains exhibited good mixing and
seemed to have converged; there were enough effective samples for the fixed
effect parameters to estimate 95% credible intervals well and none of the
Gelman-Rubin statistics crossed the conventional 1.01 threshold, suggesting
negligible sensitivity to the initial values.

Figs. 4 and 5 below contain normal quantile-quantile plots of δ and γ
random effects. The plots indicate that the distributions of random δ and γ
effects can be approximated by normal distributions and that – at least in
this particular example – these parameters seem to be good candidates for
representing variability in the sensitivity and criteria parameters due to the
grouping factors.
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Fig. 4: Normal quantile-quantile plots of δ random effects. If the data points are normally
distributed, they should form an approximately straight line. Here the delta random effects
in the 64 ms condition seem to deviate from the straight in a way that indicates that the
tails of their distribution may be different than the tails of the normal distribution.
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Fig. 5: Normal quantile-quantile plots of γ random effects. See Fig. 4 for a description.

Once enough good quality posterior samples are obtained for the param-
eters of interest, the inference process can be carried out by calculating cred-
ible intervals or HPD intervals for any function of the parameters, or Bayes
factors for each parameter separately. However, even when the Stan output
summary does not indicate sampler convergence issues, before drawing any
further conclusions the researcher should first check if the model fits the data.
The plot sdt fit function can be used for this purpose:

p l o t s d t f i t ( f i t , adata , c ( ’ order ’ , ’ durat ion ’ ) ) )

This function requires at least three arguments: a stanfit object, an ag-
gregated data list produced by the aggregate responses function that was
used to produce the stanfit object, and a vector of names of variables that will
determine how the data will be partitioned before plotting. We recommend
assessing the fit at the individual level, but we did not include the participant
identification number in the list of conditioning variables because the resulting
plot would take up too much space.

As can be seen in Fig. 6, which shows the ROC curves produced by the code
above, the model seemed to fit the data well in all but one condition (RATING-
DECISION, 64 ms duration, lower right panel), in which three out of seven
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relevant4 points were outside the two-dimensional 95% posterior predictive
regions.
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Fig. 6: ROC curve fit. The dashed lines represent the implied ROC curves, the points
represent the observed (p(H), p(F )) points, and the horizontal and vertical 95% credible
intervals represent the posterior uncertainty in the estimates of those points.

Another way to assess model fit visually is by inspecting the conditional re-
sponse distributions (p(y|stim)), such as those shown in Fig. 7, which was also
created using the plot sdt fit function by adding the type = ’response’

argument.

4 The point in the upper-right corner of a ROC curve is always in the (1, 1) position
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Fig. 7: Response distribution fit. The solid and dashed lines represent the implied response
(y) distributions, the points represent the observed proportions of responses, the 95% cred-
ible intervals represent the posterior uncertainty, and the type of line (dashed or solid)
represents the stimulus class.

Both plots can be informative about the reasons why a model does not
fit the data. In this particular case, the plot seems to suggest that it may
be a good idea to inspect the fit at the individual level and see if there are
some participants with unusual p(y|stim = 1) distributions in the RATING-
DECISION × 64 ms condition. On the other hand, it is also possible that
the lack of fit is mainly a consequence of the assumption that duration had
zero effect on γ, or that more substantial modifications are necessary, such as
dropping the equal variance assumption.

14 Converting unconstrained δ and γ parameters to sensitivities
and criteria

Posterior δ and γ samples have to be transformed in order to work with the
d′ and c parameters. Because δ (γ) and d′ (c) are related by an isomorphism,
they contain exactly the same information and the translation between the
two representations is always possible, although certain inferential tasks are
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not automatized in the current version of our package. In particular, translat-
ing between the two representations is straightforward only when fixed effects
represent average parameter values in separate conditions, not when they rep-
resent differences between conditions, regression slopes, or interactive effects.
For that reason, if there are no numerical predictors in the model, we rec-
ommend always using a separate intercepts parametrization for the δ and γ
parameters. This is obtained when the effects are represented by the R model
formulae of the form ∼ -1 + f 1:f 2:...:f n, where the -1 term suppresses
the common intercept and the f i terms represent nominal variables (i.e.,
factors). In this way all the SDT parameters will be estimated for each con-
dition separately, d′ can be recovered from δ for every condition using the
exponential function, and all the criteria can be recovered for every condition
using the gamma to crit function described later in this paper. Since this is a
Bayesian model, arbitrary contrasts, including the contrasts that correspond
to interactive effects, can be calculated using the posterior samples.

In our example, because nested parametrization was used for the δ fixed
effects model matrix, all four delta fixed parameters can easily be trans-
formed to sensitivities by applying the exponential function. It is important
to remember that because the logarithm is a non-linear transformation, the
δ to d′ conversion step should be done first before applying any other trans-
formations to the posterior samples; in general, the logarithm of a point and
interval d′ estimate is not equal to the point and interval estimate calculated
after transforming the posterior δ samples to the d′ samples. The same is true
of the γ (c) parameters.

In this case the first column of the gamma fixed matrix (the intercept) cor-
responds to the values of the γ vector in the DECISION-RATING condition,
but the second column corresponds to the effect of order on γ. For this reason
the posterior criteria samples can be obtained using the gamma to crit func-
tion only for the first column of the gamma fixed matrix. This is because the
second column represents the difference in γ between conditions and translat-
ing from γ to c will not give the correct difference in c. In order to recover
the criteria for the second condition, the γ posterior samples for this condition
would have to be computed first. This could be achieved by adding the pos-
terior samples of γ effects to the posterior samples of γ in the first condition,
and then converting the obtained γ posterior samples for the second condition
to the criteria posterior samples using the mapping in Eq. 1.

15 Testing the model on simulated data

We simulated the data from a hypothetical exact replication of the previously
described experiment using the point estimates from the previous fit as known
realistic parameter values. The true hierarchical model was fitted to the simu-
lated data. Mixing performance was similar to the real data case. All the model
parameters were correctly recovered in a sense that the true values were out-
side the 95% credible intervals no more than 5% of the time. Note that unless
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there is an error in the software, in this case the credible intervals and point
estimates are automatically correct since they are based on the model fitted
to the data obtained from itself.

As we have emphasized, the models that lack the necessary hierarchical
structure may easily show reliable effects where none exist, or they may fail to
detect true differences. To illustrate this problem, an SDT model that differed
from the true model only in that it did not have any hierarchical structure
was fitted to the same simulated dataset. Since the non-hierarchical model was
much simpler and the data consisted of only eight vectors of response counts,
the mixing of the chains was excellent. This simple simulational example shows
how misleading the results of such analyses can be.

The 95% credible intervals calculated for the fixed effects based on each
model are compared in Fig. 8 below. The estimates were centered on the true
values to simplify the presentation, thus the true values are represented by
the horizontal line at 0. We have also calculated the posterior interval and
point estimates of the d′ and c parameters for both models. This was done
by adding the γ effects to the γ values for the first condition, and converting
the obtained condition specific γ values to condition specific criteria using the
gamma to crit function. In this way the criteria fixed effects shown in the two
panels on the right represent the actual condition specific posterior criteria
estimates. Note that the d′ and c parameters share a common scale, but the δ
and γ parameters do not.
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Fig. 8: Comparison of the point and interval posterior estimates based on the true hierar-
chical and the simplified non-hierarchical models. The posterior estimates were centered at
the true values to allow for easy inspection of the direction and magnitude of estimate bias.
The dashed horizontal line centered at 0 represents the true values of the parameters; point
and 95% credible interval estimates are based on the true and the simplified models. The
two panels on the left (right) represent the posterior interval and point estimates on the δ
/ γ (d′ / c) scale (see the description in the text). The estimates based on the true model
are correct.
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As can be seen, the true model correctly recovered the known parameter
values, but the estimates based on the simplified, non-hierarchical model were
severely biased; the credible intervals were not only much shorter than the
correct intervals, but also failed to contain most of the true values. In fact, most
of the point d′ and c estimates based on the non-hierarchical model differed from
the true values by several standard deviations of their posterior distributions.

One of the main reasons that the ROC curves are calculated when an
SDT model is fitted to the data from psychology experiments is to determine
whether the model is approximately true. However, as can be seen in Fig. 9
below, in this case the observed ROC curves seemed to fit the false simplified
model’s predictions quite well.
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Fig. 9: ROC curve fit for the non-hierarchical model. See the description of Fig. 6

This is a clear example of what we have previously described as the worst
case scenario of estimate bias: the point estimates are severely biased, the
interval estimates are much more narrow than they should be, and the ROC
curve plot indicates that the model fits the data well. All this gives a false
impression of validity of conclusions that systematically differ from the truth.

As striking as this example may be, there is nothing special about the
dataset that was used to produce it; To our knowledge the observed fixed and
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random effects are within the range of values observed in other studies: the
average d′ values ranged from 0.9 to 3.6 and the average criteria ranged from
−3 to 2.5.

16 Limitations of the current implementation and some future
directions

Certain aspects of our implementation are experimental. This is especially true
of the criteria scaling factor and the default parameter values that specify the
prior distributions for fixed and random effects. Without fitting the model to
a large number of different datasets it is impossible to say with any degree of
certainty if the default values for the parameters that define the priors on δ and
γ effects are good starting points in the majority of typical cases. When they
are not, the model may not converge, or the proportion of effective samples
may be low. This is a common problem when fitting complicated Bayesian
models. The only advice that we can provide at this stage is to always carefully
inspect the posterior samples, test if the model fits the data, and use informed
judgment to see if the obtained results make theoretical sense.

The correlations between the γ random effects as well as the correlations
between the δ random effects are accounted for in our model, but the correla-
tions between the δ and the γ random effects are not. The results of the tests
with real datasets that we have done so far seem to indicate that implement-
ing this feature is not urgent; this may be due to the fact that the criteria are
midpoint-centered, but more extensive testing with many different datasets is
necessary to see how serious this limitation is.

Perhaps a more pressing matter is the possibility to fit the unequal vari-
ance SDT model as it seems to be one of the main alternative models tested
against the equal variance SDT model. The results of the two surveys by Swets
and Pickett (1982) and Swets (1986) seem to indicate that unequal variance
may be common, although these results are mostly based on aggregated data;
as shown by Morey et al. (2008) ROC curves based on aggregated data may
falsely indicate lack of variance equality. This is a more difficult task than
implementing the correlations between the two kinds of SDT parameters, be-
cause a new kind of parameter has to be introduced with all the associated
hierarchical linear regression structure and an appropriate link function. A
related problem is that when the variances of the two evidence distributions
are not equal, there is more than one notion of the midpoint between the ev-
idence distribution means. Consequently, the correlations between the γ and
the δ random effects may have to be introduced simultaneously with the un-
equal variance model, resulting in an increase in model complexity and the
associated demand for a large number of data points and participants to ob-
tain interval estimates that are narrow enough for effects of typical size to be
reliably detected.

Thanks to Dobromir Rahnev’s initiative, a substantial collection of datasets
that can be modeled using the bhsdtr package was recently made publicly
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available, as described in Rahnev et al. (2019). This presents a great oppor-
tunity for extensive testing and makes it possible to obtain well-calibrated
default priors for all the parameters in the future.

17 Concluding remarks

The importance of SDT to psychology stems from the fact that given weak
assumptions about an underlying decision process, it promises to deconfound
sensitivity from bias in arbitrary classification tasks – a problem almost as
common in psychology studies as the usage of classification tasks. To the best
of our knowledge, at present the bhsdtr package provides the only method
of Bayesian inference for SDT models with or without ratings that can be
recommended as a default choice in typical applications. That is because it is
the only method that allows for fixed and random effects in all the parame-
ters of an SDT model with additional criteria. Our parametrization forces the
sensitivity to be non-negative and the criteria to be order-restricted, while the
isomorphisms between the d′ and c parameters and the unconstrained δ and γ
parameters make it possible to supplement the SDT model with the general hi-
erarchical linear regression structure. There is no limit to the number of group-
ing factors except for the one imposed by available computational resources;
correlations of random effects of the same grouping factor are accounted for,
all the SDT parameters can be modelled by linear regression within the same
model, and all the effects on all the SDT parameters estimable within the levels
of the grouping factors can have associated random effects. Finally, if the need
arises to relax a built-in restriction, experienced users can extend the model
in arbitrary ways by using automatically generated human-readable Stan code
as a template.

The github package repository (https://github.com/boryspaulewicz/bhsdtr)
contains the annotated source code and data that were used to perform all the
analyses and produce all the figures presented in this paper.
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