
Theoretical Contributions

Natural Alternatives to Natural Number: The Case of Ratio

Percival G. Matthews* a, Amy B. Ellisb

[a] University of Wisconsin-Madison, Madison, WI, USA. [b] University of Georgia, Athens, GA, USA.

Abstract
The overwhelming majority of efforts to cultivate early mathematical thinking rely primarily on counting and associated natural number
concepts. Unfortunately, natural numbers and discretized thinking do not align well with a large swath of the mathematical concepts we
wish for children to learn. This misalignment presents an important impediment to teaching and learning. We suggest that one way to
circumvent these pitfalls is to leverage students’ non-numerical experiences that can provide intuitive access to foundational mathematical
concepts. Specifically, we advocate for explicitly leveraging a) students’ perceptually based intuitions about quantity and b) students’
reasoning about change and variation, and we address the affordances offered by this approach. We argue that it can support ways of
thinking that may at times align better with to-be-learned mathematical ideas, and thus may serve as a productive alternative for particular
mathematical concepts when compared to number. We illustrate this argument using the domain of ratio, and we do so from the distinct
disciplinary lenses we employ respectively as a cognitive psychologist and as a mathematics education researcher. Finally, we discuss the
potential for productive synthesis given the substantial differences in our preferred methods and general epistemologies.
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Introduction: The Need to Consider Alternatives to Natural

Number Based Instruction

Mathematical literacy and engagement is essential for participation in modern society, with research showing
success in mathematics to be an important determinant of children’s later educational, occupational, and even
health prospects (Cross, Woods, & Schweingruber, 2009; Garcia-Retamero, Andrade, Sharit, & Ruiz, 2015;
Kilpatrick, Swafford, & Findell, 2001; Moses & Cobb, 2001). Generally, the acquisition of a robust sense of
number is taken to be an essential first step on the road to mathematical competence (Landerl, Bevan, &
Butterworth, 2004; National Mathematics Advisory Panel, 2008). Unfortunately, most efforts to cultivate early
number sense rely on count-based, discretized natural numberi principles – principles that do not align well with
a large swath of the mathematical concepts we wish for children to learn. We argue that this misalignment
presents an important impediment to teaching and learning. We further suggest that one way to circumvent
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these pitfalls is to leverage children’s non-numerical experiences that can provide intuitive access to
foundational mathematical concepts.

In this piece, we explicitly critique the current practice of building nearly all of early mathematics out of counting
and associated natural number concepts. Although natural numbers provide an undoubtedly flexible and
powerful tool for supporting mathematical thinking, we argue that the practice of introducing almost every
fundamental concept in terms of natural numbers often comes with a cost. Namely, to the extent that natural
number concepts are misaligned with to-be-learned concepts, they are unlikely to serve as adequate
foundations for building understanding of such concepts. There are many ways to conceive of these costs,
depending upon one’s disciplinary commitments. They can be characterized in terms of negative transfer
(Novick, 1988), inhibiting schemes (Streefland, 1991), change-resistance (McNeil, 2014) and epistemological
obstacles (Sierpińska, 1987), to name but a few. Our aim is not to provide an exhaustive list of the ways in
which these costs have been characterized, but to highlight a family of related costs across disciplines that may
apply to overreliance on natural number and to underscore the idea that explicit concern for these costs should
inform our theory and practice. Moreover, it is important to consciously recognize

1. that there are often multiple alternative choices, symbolic and nonsymbolic, available for representing early
mathematical concepts,

2. that each of these alternatives typically comes with conceptual affordances and constraints, and

3. that number is no exception to points 1 & 2.

Ultimately, we advocate for explicit leveraging of perceptually based intuitions about quantity that may offer
different affordances than symbolic numbers. These intuitions can support ways of thinking that may at times
align better with to-be-learned mathematical ideas, and thus may serve as a productive alternative for particular
mathematical concepts when compared to number.

The Supremacy of Natural Number

Natural number abounds in K-12 mathematics in the U.S., with standard curricular and instructional approaches
building early mathematics from counting activities. Students build from counting to whole number addition and
subtraction, followed by multiplication (initially as repeated addition) and division (initially as partitioning).
Students are then introduced to negative numbers and rational numbers, and only reach ideas about the real
numbers in advanced algebra courses in high school (Devlin, 2012; Dougherty, 2008). The primacy of natural
number is reflected in policy and standards documents such as the Common Core State Standards for
Mathematics (National Governors Association Center/Council of Chief State School Officers, 2010), as well as
in the vast majority of elementary and middle school curricula (e.g., Lappan et al., 2006; Putnam, 2003;
Thompson & Senk, 2003). This approach obscures the fact that, although numerical representations are
convenient vehicles for communicating mathematical concepts, they are seldom the only effective
representations available.

Overreliance on number can lead educators and learners to focus on number symbols themselves as opposed
to the referent fields to which they should refer (compare with Kaput, Blanton, & Moreno-Armella, 2008).
Consider the major Common Core Mathematical Content Standards for Kindergarten (National Governors
Association Center/Council of Chief State School Officers, 2010). Although the standards include two sets of
ideas that are not exclusively numerical (identify, describe, compare, and compose shapes and describe and
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compare measurable attributes), the remaining content standards are exclusively numerical. Broadly, the
overwhelming majority of the content standards in early elementary are focused on counting and natural
number, with many of the ideas about comparison and magnitude subsumed under the counting and cardinality
strands. This is despite the fact that the fundamental notion of relative magnitude and the consequent ideas of
greater than and less than pervade everyday life and draw on children’s natural experiences. Even though
children without numerical training can immediately choose the taller of two people or the larger of two pieces
of cake – comparisons involving continuous (Smith, 2012) quantitiesii – our policies are structured so that early
numerical comparison is unnecessarily tied to natural number symbols and the discrete quantity logic they
represent. In this case, we have privileged number symbols and relegated the core to-be-learned concept to
the background. Moreover, this step is wholly unnecessarily given that children’s perceptual abilities provide
them intuitive access to spatial relations that easily illustrate comparative magnitude (Brannon, Lutz, & Cordes,
2006; Davydov & Tsvetkovich, 1991; Dougherty, 2008; Dougherty & Slovin, 2004; Feigenson, Dehaene, &
Spelke, 2004; Gao, Levine, & Huttenlocher, 2000; Schmittau & Morris, 2004).

This is but one example of what we argue is a more general pattern. In building the majority of early
mathematics out of counting and natural number, we have chosen to privilege a particular conceptual basis for
much of children’s mathematical thinking, and this choice has a number of drawbacks. For instance, prior
research has argued convincingly that teaching the multiplication operation primarily in terms of repeated
addition of whole numbers can hamper more nuanced understandings of multiplication later on (e.g., Fischbein,
Deri, Nello, & Marino, 1985; Harel, Behr, Post, & Lesh, 1994; Smith, 2012; Steffe, 1994; Thompson &
Saldanha, 2003; Verschaffel, De Corte, & Van Coillie, 1988). Students persist in conceiving of multiplication as
repeated addition, sometimes into secondary school (Anghileri, 1999; Nunes & Bryant, 1996; Siegler,
Thompson, & Schneider, 2011), which can lead not only to misconceptions such as “multiplication makes
bigger” (Greer, 1988), but also to difficulties conceiving of multiplication with non-natural numbers, envisioning
multiplication as continuous scaling, and understanding the inverse relationship between multiplication and
division (e.g. Smith, 2012).

Another major deleterious effect of overreliance on counting and natural number is particularly dangerous
because it is so counterintuitive: Namely, overreliance on natural number can impoverish the broader concept
of number itself. Teaching number as fundamentally tied to counting obscures key continuities shared by all real
numbers – for instance, that they can all be ordered and assigned specific locations on number lines (Okamoto
& Case, 1996; Siegler et al., 2011). This development of discretized, count-based conceptions of number can
lead to deep confusion when natural number symbols are concatenated to represent more advanced numerical
concepts such as ratios and associated rational number concepts. This confusion is deeply implicated in
prevalent misunderstandings such as the whole number bias with fractions, the tendency to use the natural
number counting scheme to interpret fractions (e.g., judging 1/8 as larger than 1/6 because 8 is larger than 6;
Mack, 1990; Ni & Zhou, 2005). It is important to note that these misunderstandings are not limited to children;
even teachers and other highly educated adults fall prey to similar difficulties that can be traced back to
overreliance on natural number concepts (Newton, 2008; Reyna & Brainerd, 2008; Stigler, Givvin, & Thompson,
2010). Thus, even with respect to the fundamental concept of number, we argue that number symbols are not
always the best place to start. Even in the domain of number, children’s perceptions of nonsymbolic spatial
figures and their embodied experiences can sometimes provide intuitive semantic access that can be
purposefully recruited to make symbols more meaningful (Lewis, Matthews, & Hubbard, 2015).
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An Alternate Conceptual Basis

There is evidence that children can build up mathematical thinking in ways that are not always bound to natural
number (e.g., Davydov & Tsvetkovich, 1991; Dougherty, Flores, Louis, & Sophian, 2010). This is clear insofar
as much of advanced mathematical thinking is supported by various types of visual representations (e.g.,
Ainsworth 2006; Nistal, Van Dooren, Clarebout, Elen, & Verschaffel, 2009; Rau, 2017) and embodied
experiences (Abrahamson, 2012; Alibali & Nathan, 2012; Ellis, Özgür, Kulow, Williams, & Amidon, 2015) that
are not numerical in nature. Early mathematics can be built from activities that focus on continuous quantities
and consideration of magnitudes qua magnitudes – as amounts of ‘stuff’ as opposed to a measure that is
explicitly numerical. Activities embracing these alternate representations are not merely inferior proxies for
numerical representations. In fact, they offer different affordances than what is offered by activities reliant on
symbolic numbers, harnessing children’s everyday experiences with amount, length, height, movement,
volume, and other aspects of their experiential worlds. In the process, such an instructional focus can recruit
perceptual apparatuses that evolved over millennia that can provide deeply intuitive semantic access to
fundamental mathematical concepts (such as greater than or less than or continuity) independently of numbers.

Indeed, some researchers have proposed that the ability to engage with a generalized sense of magnitude is
psychologically prior to the conception of number, laying the foundation for its emergence (e.g., Leibovich,
Katzin, Harel, & Henik, 2017; Mix, Huttenlocher, & Levine, 2002; Newcombe, Levine, & Mix, 2015). A larger
corpus of psychological literature shows intimate connections between space and number or time and number
without committing to which is logically prior (e.g., Dehaene, Dupoux, & Mehler, 1990; Hubbard, Piazza, Pinel,
& Dehaene, 2005; Walsh, 2003). Research showing a psychological connection between perceived
magnitudes and symbolic numerical magnitudes is perhaps most interesting for what it may suggest about the
universe of building blocks available for supporting mathematical thinking (Dehaene et al., 2003; Fischer,
Castel, Dodd, & Pratt, 2003; Henik & Tzelgov, 1982; Hubbard et al., 2005; Matthews & Lewis, 2017; Newcombe
et al., 2015; Odic, Libertus, Feigenson, & Halberda, 2013; Walsh, 2003). A tight connection between symbolic
numerical cognition and nonsymbolic perceptual abilities suggests that nonsymbolic abilities may function as
alternative foundations for the same topics we often choose to represent with numbers. It may in fact be that
fully embracing the power of the nonsymbolic thinking is the key to maximizing meaningful thinking with
mathematical symbols.

In the sections that follow, we will unpack this argument using the domain of ratio, and we will do so from the
distinct disciplinary lenses we employ respectively as a cognitive psychologist (Matthews) and as a
mathematics education researcher (Ellis). We chose to focus on ratio for two reasons. First, researchers from
mathematics education research and from psychology, despite substantial differences in approach, both agree
that understanding ratio – and associated rational number concepts – is critical (Anderson, 1969; Beckmann &
Izsák, 2015; Behr, Lesh, Post, & Silver, 1983; Lobato, Ellis, & Zbiek, 2010; National Council of Teachers of
Mathematics, 2000; National Mathematics Advisory Panel, 2008; Siegler et al., 2012; Siegler, Fazio, Bailey, &
Zhou, 2013). Ratio is a foundational topic that supports student’s understanding of probability, function, and
rates of change that form the basis of algebra, calculus and other higher mathematics. Second, it represents a
conceptual domain that continues to provide considerable difficulty for learners despite decades of research
dedicated to study of its acquisition (e.g., Anderson, 1969; Cramer & Post, 1993; Ellis, 2013; Latino, 1955;
Lesh, Post, & Behr, 1988; Lobato et al., 2010; Novillis, 1976; Smith, 2002).
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In the section immediately below, one of us (Matthews) will argue 1) that research from multiple fields suggests
that humans have a perceptually-based sensitivity to nonsymbolic ratio that emerges prior to formal instruction
and 2) that leveraging these intuitions may prove an effective base for building up formal ratio concepts. In the
next, (Ellis) will address how ratio can be developed from magnitude comparison, and will propose a way to
foster the development of internalized-ratio from children’s perception and mathematization of covarying
quantities. In the final section, we will discuss how the divergence in our general methods presents
opportunities for synthesis. We ultimately underscore the importance of the convergence in our conclusions
given the backdrop of substantial differences in methods and philosophy.

Ratio as Percept (Matthews)

In a recent series of papers, my colleagues and I have argued for a cognitive primitives approach to grounding
ratio concepts (Lewis et al., 2015; Matthews & Chesney, 2015; Matthews & Hubbard, 2017; Matthews & Lewis,
2017; Matthews et al., 2016). That is, I have argued that a considerable swath of empirical research suggests
that human beings have intuitive, perceptually-based access to primitive ratio concepts when they are
instantiated using nonsymbolic graphical representations (Figure 1). My colleagues and I have dubbed this
basic perceptual apparatus the Ratio Processing System (RPS) and have called for new research exploring its
limits and how it might be used to support mathematical reasoning (Lewis et al., 2015; compare with Jacob,
Vallentin, & Nieder, 2012). Unfortunately, I have often been so concerned with explaining my experimental
protocols and results that I have failed to give an adequate treatment of what I mean when I use the word
‘ratio.’ As a result, some colleagues have accused me of playing fast and loose with the terms ratio, fraction,
and rational number – often ignoring the distinctions between formal definitions of the terms.

Figure 1. Sample nonsymbolic ratios used in nonsymbolic comparison tasks. Ratios are composed of various type of
nonsymbolic quantities, including (a & c) dot arrays, (b) line segments, and (c) circle areas. Note that dot arrays, while
countable, are often used in task where the number of dots is high (i.e. > 40) and the time limit is set low (i.e. < 2 seconds)
to preclude the possibility of counting. In these instances, dot array numerosity is processed perceptually (for an example,
see Matthews & Chesney, 2015).

For my part, I plead guilty to these charges. Indeed, psychologists elide these distinctions every day. Even
taking a most cursory glance through a psychology journal, one can find many charts with a y-axis marked
“proportion correct” to indicate frequency of correct response, which is not true to the mathematically precise
definition of proportion as a statement that two ratios or fractions are equal. Devoted formalists shudder! But
should we gasp too, when we find the first definition of proportion in the Oxford English Dictionary is “A part,
share, or number considered in comparative relation to a whole” (“Proportion,” 2016)? What about when the 2nd
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definition is “the relationship of one thing to another in terms of quantity, size, or number; the ratio”? I cite these
definitions not because I take the dictionary to be canon, but because I respect Wittgenstein’s (2001) argument
that much of what we know about a word and its associated concepts emerges from the way it is used in
everyday language games. The simple fact is that we often use the terms ratio, fraction, proportion,
percentage, largely interchangeably in everyday language. This is not the result of some linguistic depravity.
Rather, it reflects the fact that the language games in which these specific words are caught up are general
games involving the broader notions associated with the rational number construct. All share reference to
relational quantities that are at root characterized by a concern for how one quantity stands in relation to
another. When I use the word ratio, I refer to this generalized sense of a quantity emerging from a comparative
relationship between pairs of quantities, and I similarly refer to this generalized sense when I use the word
fraction. Thus, for my purposes, the distinctions between the terms are largely immaterial.

My approach is motivated in part by Kieren’s (1976, 1980) influential treatments of rational number concepts.
He argued that rational number should be a seen as a mega-concept involving many interwoven subconstructs
or interpretations, including:

1. Rational numbers as fractions

2. Rational numbers as decimal fractions

3. Rational numbers as equivalence classes of fractions

4. Rational numbers as ratios of integers

5. Rational numbers as operators

6. Rational numbers as elements of the quotient field

7. Rational numbers as measures or points on a number line.

For Kieren, robust understanding of rational number depends upon having adequate experience with their
many interpretations. Although the taxonomies vary somewhat, several prominent researchers have endorsed
such a mega-concept view (e.g., Behr et al., 1983; Charalambous & Pitta-Pantazi, 2007; Novillis, 1976), with
Ohlsson (1988) arguing that learners’ difficulties with rational numbers stem in large part from “the bewildering
array of many related, but only partially overlapping ideas that surround fractions” (p. 53).

Given the complexity of the rational number mega-concept, it is arguably important to find interpretations that
square well with children’s intuitions. To that end, my research has focused on promoting the addition of an
eighth interpretation to the list above that essentially combines subconstructs #4 and #7: rational numbers as
ratios of nonsymbolic quantities. This nonsymbolic ratio interpretation is one more or less formulated by
Carraher (1996) when he drew the distinction between a ratio of quantities and a ratio of numbers. According to
this interpretation, the term ratio need not exclusively refer to a multiplicative relationship between numbers; it
can also correspond to a similar relationship between two nonsymbolic quantities, such as the ratio of the
lengths of two line segments considered in tandem, e.g., “1/2” instantiated as

Here, each of component line segments is an extensive quantity, whose magnitudes can be defined in absolute
terms by their lengths considered in isolation. In contrast, the ratio of these nonsymbolic magnitudes is an
intensive quantity determined by the ratio between them (Lesh, Post, & Behr, 1988).

Natural Alternatives 24

Journal of Numerical Cognition
2018, Vol. 4(1), 19–58
doi:10.5964/jnc.v4i1.97

https://www.psychopen.eu/


This nonsymbolic perspective is consistent with Davydov’s project to ground fractions instruction in intuitions
about measurement (Davydov & Tsvetkovich, 1991; Dougherty, 2008), discussed in more detail by Ellis below.
In contrast to Davydov, however, my focus is on nonsymbolic ratio as percept – as an intensive quantity that
can be perceived in an analog fashion (i.e., in an intuitive, nonverbal, and approximate form). As such, its
essence is nonverbal, further eliding the distinctions among ratio, fraction, percentage and other verbally
mediated descriptions of rational number concept (see also Van Den Brink & Streefland, 1979).

It is noteworthy that ratios of nonsymbolic quantities are actually much more expansive in reach than the typical
conception of ratio introduced with natural numbers. When composed of continuous nonsymbolic quantities
such as line segment lengths, the ratios formed extend beyond those corresponding to rational numbers and
include all real numbers. Pi, the ratio between a circle’s circumference and its diameter, is one such “irrational”
ratio that corresponds to a pair of line segments similar to those in Figure 1. The ratio of an equilateral triangle’s
altitude to one of its sides is another. Indeed, one important aspect of the nonsymbolic ratio is that it can both
provide intuitive access to rational numbers and simultaneously provide intuitive access to other classes of
numbers, including whole numbers and irrational numbers (see Matthews & Hubbard, 2017; compare with
Siegler et al., 2011). Perhaps what is most appealing about the nonsymbolic ratio interpretation is that it does
not fundamentally rely upon number symbols to convey the generalized sense of rational number as a quantity
emerging from a relationship between pairs of quantity.

The Challenge of Building Ratios From Natural Numbers

It is arguable that the single greatest shortcoming of typical approaches to teaching rational numbers lies in
their dependence upon natural number symbols and count-based logic. Although number symbols are typically
seen as relatively abstract and flexible, it is arguable that Arabic numerals are rendered concrete relative to
many other symbols due to the information that they automatically communicate to experienced learners (e.g.,
Cohen Kadosh, Lammertyn, & Izard, 2008; Moyer & Landauer, 1967). Thus, repurposing the counting numbers
2 and 3 to represent 2/3, a quantity that cannot be reached by counting, may pose some special problems,
precisely because of the concrete nature of our understandings of 2 and 3.

Indeed, much prior research demonstrates that natural number symbols are learned so thoroughly that simply
seeing them evokes thoughts about whole number magnitudes. For example, whole number values are
encoded so automatically that even children demonstrate Stroop effects whereby they are faster and more
accurate in judging that the 7 is physically larger than the 5 in

than they are to indicate that the 5 is physically larger than the 7 in

(Bull & Scerif, 2001; Henik & Tzelgov, 1982; Washburn, 1994). Further, viewing large numbers automatically
primes many adults to attend to the right side of space, and viewing small numbers primes attention to the left
side of space (Dehaene, Bossini, & Giraux, 1993; Fischer et al., 2003). Moreover, neuroimaging studies show
that even passive exposure to symbolic numbers – in contrast to nonnumerical words – activates brain regions
used to process discrete sets of objects (e.g., Cantlon et al., 2009; Eger, Sterzer, Russ, Giraud, & Kleinschmidt,
2003; Piazza, Pinel, Le Bihan, & Dehaene, 2007). For decades now, we have known that the ways human
beings discriminate between symbolically represented natural numbers parallels the ways that humans
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perceptually discriminate between magnitudes of different perceptual continua, such as two sounds of different
volumes or lights of different intensities (Moyer & Landauer, 1967). This is even true for kindergarten children in
familiar number ranges (Sekuler & Mierkiewicz, 1977). These are but a few of the extensively replicated effects
that suggest that number symbols are processed rapidly and independently of volition. They bear an
informational load that is not easily shed, and this has consequences.

One consequence alluded to above is the inappropriate application of natural number schemas to rational
number contexts. For instance, when dealing with rational numbers, learners commonly struggle with the whole
number bias – a strategic bias to base judgments on a single component of a ratio or fraction rather than on the
relationship between the components (DeWolf & Vosniadou, 2015; Mack, 1995; Ni & Zhou, 2005; Obersteiner,
Van Dooren, Van Hoof, & Verschaffel, 2013; Pitkethly & Hunting, 1996). For instance, children routinely judge
1/8 to be larger than 1/6, because 6 is larger than 8 (Mack, 1990). Thus, when a nationally representative
sample of high school students was asked whether 12/13 + 7/8 was closest to 1, 2, 19, or 21, students were
more likely to choose 19 and 21 than 2 (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1980). That is, many
students demonstrate a whole number bias, adding the components of the fractions (i.e., numerators,
denominators) in violation of the principles that govern fraction arithmetic.

Although this problem is well known in both mathematics education research and in psychology, the depth of
the problem may be underappreciated. Research shows that even mathematicians and undergraduates at
highly selective universities are not completely immune to this bias (e.g. DeWolf & Vosniadou, 2011;
Obersteiner et al., 2013; Vamvakoussi, Van Dooren, & Verschaffel, 2012). When undergraduate participants are
asked to compare symbolic fractions, they tend to be highly accurate overall, but they are significantly slower
and less accurate when component based comparisons do not agree with overall magnitude comparisons.
These effects are particularly apparent in cases involving double symbolic incongruities – cases in which the
larger ratio has both a smaller numerator and smaller denominator compared to the larger – such as 2/9 vs.
1/3. In my own work, I found that this double symbolic incongruity imposed a cost of 400-500ms extra
processing time – a massive cost for tasks generally completed in less than 2000 ms. Even though participants
were highly accurate overall (mean accuracy > 90%), they were six times more likely to answer incorrectly on
these items compared to others (Matthews & Lewis, 2017; see also Ischebeck, Weilharter, & Körner, 2016).

What shows up as relatively small costs in terms of reaction times for the highly educated adult seems to
impose a much higher cost on children acquiring rational number knowledge. The prevalence and severity of
the costs associated with introducing ratio and fraction with natural number has led some to hypothesize that
engagement with whole number schemas directly inhibit the acquisition of rational number concepts (e.g.,
Hartnett & Gelman, 1998; Streefland, 1978; see Pitkethly & Hunting, 1996, for a review). On this view,
difficulties with rational numbers stem directly from the entrenchment of discretized natural number logic with
which children routinely engage in their formal mathematics experiences (compare with McNeil & Alibali, 2005;
McNeil et al., 2012). Because the 2 and 3 in 2/3 are processed involuntarily as natural numbers, it is difficult to
get learners to attend to the new number that emerges from the relationship between them given the new
notation. Learners cannot see the forest (rational numbers) because of their familiarity with the trees (natural
number symbols). To the extent that ratios and fractions must be represented using concatenated and
repurposed natural numbers, the difficulty would seem to be nearly inevitable.
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In this context little hope is to be gained from any of Kieren’s seven interpretations of rational number. Each
relies on notations that employ repurposed natural number symbols and are therefore likely to evoke count
based logics that are not easily reconciled with the relational logic of rational numbers. However, the eighth
subconstruct I have offered – that of the nonsymbolic ratio – is not dependent upon number symbols. If such an
interpretation of ratio could be made sensible, it might provide access to important aspects of the rational
number mega-concept without falling subject to the pitfalls of symbolic representations.

A Sense of Proportion

Above I alluded to Carraher’s (1996) instructive distinction between a ratio of quantities and a ratio of numbers.
He summed up what is at stake when pedagogy relies solely on number symbols thusly:

A narrow mathematical conception disregards the role physical quantity plays in the meaning of the
concept and consequently obscures the psychological origins of fractions, for there is little doubt that
number concepts, including rational number concepts, are developed through acting and reflecting
upon physical quantities. (p. 241)

He proposed that nonsymbolic ratio could go beyond the number line or measurement interpretation (#7),
which fundamentally involves a project of mapping nonsymbolic ratios to symbolic numbers (see Chesney &
Matthews, 2013). Carraher temporarily shed the connection to number entirely, suggesting that students could
come to represent ratios between line segments in a de-arithmetized or non-numerical fashion, without the
encumbrance of units (Figure 2; compare with Ellis’ paint roller example below). He argued that,

By suppressing the number line altogether we can work in a non-metric space, with no unit of measure,
in which the lengths of line segments are mutually defined according to their relative magnitude…this
characteristic makes possible the creation of partially "de-arithmetized" tasks, for which there exist no
mere numerical solutions and for which students must reflect upon ratios of quantities. (p. 285)

Figure 2. Adapted from Carraher (1993). Panel (a) shows a typical use of nonsymbolic quantities that are paired with
natural number labels. By contrast, panel (b) shows the line segments in the same ratio and invites consideration of the
relation without reliance on numbers and counting.

This conception presaged recent work that cast number lines as proportions between nonsymbolic ratios and
pairs of number symbols (e.g., Barth & Paladino, 2011; Matthews & Hubbard, 2017), focusing on the intuition
provided by the nonsymbolic ratio representation. Despite the conviction with which he wrote, Carraher offered
limited empirical evidence regarding these “psychological origins.” A proper defense would have required
showing that human beings do have access to rational number concepts when presented in nonsymbolic form
and that this access precedes formal instruction using formal number symbols. Fortunately, the empirical record
has confirmed these claims.

A growing number of studies demonstrate that human beings do in fact have a perceptually-based sensitivity to
nonsymbolic ratios (Abrahamson, 2012; Duffy, Huttenlocher, & Levine, 2005; Fabbri, Caviola, Tang, Zorzi, &
Butterworth, 2012; Jacob & Nieder, 2009; Matthews et al., 2016; McCrink & Wynn, 2007; Sophian, 2000;
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Stevens & Galanter, 1957; Vallentin & Nieder, 2008; Yang, Hu, Wu, & Yang, 2015; see Jacob et al., 2012 or
Lewis et al., 2015 for reviews). Moreover, this nonsymbolic ratio sensitivity is present early in development,
including the years preceding formal instruction on rational number concepts. For example, even 6-month-old
infants are sensitive to nonsymbolic ratios when presented as collections of yellow Pac-men and blue power
pellets (McCrink & Wynn, 2007, Figure 3a), and preschool-aged children can match spatial ratios such as those
shown in Figure 3b (Sophian, 2000). In fact, some research suggests that very young children may at times be
more attuned to nonsymbolic ratio than to extensive magnitude; Duffy, Huttenlocher, and Levine (2005)
presented 4-yr old children with wooden dowels encased in glass sheaths as shown in Figure 3c and instructed
them to pick which of two choices matched an original dowel on length. When presented with a choice that
matched the target in terms of dowel length and a target mismatched on length but matched on dowel:case
ratio, children picked the proportional match far more often than chance. Thus, not only do young children
exhibit ratio sensitivity, but in some cases nonsymbolic ratio is even more salient than a raw match of extensive
magnitude. Moreover, they exhibit this competence without reliance upon symbolic numbers.

Figure 3. Nonsymbolic ratio stimuli used (a) with nonverbal infants by McCrink and Wynn, 2007, (b) with 4- and 5-year-old
children by Sophian (2000), and (c) with 4-year-olds by Duffy, Huttenlocher, and Levine (2005).

Recent research with adults has begun to systematically detail the robust nature of nonsymbolic ratio sensitivity
and how it relates to symbolic mathematical abilities (Hansen et al., 2015; Matthews et al., 2016; Möhring,
Newcombe, Levine, & Frick, 2016). One of the most important findings is that adults appear to process
nonsymbolic ratios perceptually (i.e., without recourse to symbolic numbers). Given their familiarity and
accuracy with symbolic fractions, one might expect for university students to convert nonsymbolic ratios into
symbolic terms to complete comparison tasks. However, multiple experiments have now found that college
students can accurately complete nonsymbolic ratio comparisons significantly faster than they complete
symbolic ratios (Matthews & Chesney, 2015; Matthews, Lewis, & Hubbard, 2016). This indicates that adults
access nonsymbolic ratios without first converting them to symbolic form. Adult performance reveals a
perceptual sensitivity – they can feel out ratio values when presented in some nonsymbolic forms (compare
with Abrahamson, 2012).

Additionally, research has found that nonsymbolic ratio processing is sometimes automatic (Fabbri et al., 2012;
Jacob & Nieder, 2009; Yang et al., 2015). Matthews and Lewis (2017) demonstrated this automatic processing
using an adapted size congruity paradigm. As alluded to above, humans are faster and more accurate when
choosing the physically larger between

than they are when choosing the physically larger between
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This is because numerical magnitudes are read automatically and influence magnitude decisions on the
physical dimension. Matthews and Lewis asked undergraduates to compare symbolic numerical ratios while
manipulating the physical font ratios, defined as the ratio generated by dividing the numerator font area by the
denominator font area. For instance in the left panel of Figure 4, the symbolic ratio 1/4 is written in a larger
symbolic ratio than 5/8. For congruent trials, the larger symbolic ratio was presented in a larger font ratio with
the smaller symbolic ratio in the smaller font ratio (left panel), and the pattern was reversed for incongruent
trials (right panel).

Figure 4. Nonsymbolic font ratio was defined as the ratio of the physical area occupied by the numerator to that occupied by
the denominator in fractions used in a comparison task. When the fraction with the larger nonsymbolic font ratio was
congruent with the numerical comparison task (i.e., on the same side as the numerically larger fraction), participants were
faster and more accurate compared to when nonsymbolic ratio was incongruent (adapted from Matthews & Lewis, 2017).

Participants were faster and more accurate on congruent trials when compared to incongruent trials. Notably,
the experimenters never made reference to nonsymbolic ratio for the duration of the experiment. Nevertheless,
nonsymbolic ratios were processed automatically, and this nonsymbolic processing influenced symbolic
numerical activity. Specifically, larger nonsymbolic ratios were associated with larger symbolic ratio values, and
smaller nonsymbolic ratios were associated with smaller symbolic ratios. The research briefly outlined here is
but a small swath of the growing body that suggests that humans and other animals (e.g., Harper, 1982;
McComb, Packer, & Pusey, 1994; Wilson, Britton, & Franks, 2002) have a basic sensitivity to nonsymbolic
ratios and that this sensitivity exists independently of number symbols.

Implications for Education/Training/Didactics

It is perhaps natural to ask, if sensitivity to nonsymbolic ratios is so pervasive and even automatic, why do
learners continue to have difficulties with rational number symbols? The answer is a simple: a basic sensitivity
does not an elaborated concept make. It is one thing to be perceptually sensitive to nonsymbolic ratio and quite
another to have verbally-mediated conceptual knowledge about ratio. It is another thing still to link such
conceptual knowledge to repurposed number symbols. On this point, I converge with Ellis in the belief that
cultivating formal ratio concepts requires effortful action on the part of the learner. Furthermore, educators will
continue to play a crucial role in spurring and supporting this effortful action.

It currently remains the case that most curricula do not attempt to leverage this nonsymbolic capacity. Despite
the work cited above to make the case humans can perceive nonsymbolic ratios, very little empirical work in
psychology has directly sought to leverage this ability (but see Abrahamson, 2012). On this issue, my work
turns from the empirical to the speculative, leaving more open questions than answers. How might we use
nonsymbolic ratios as didactic objects (Thompson, 2002) that support mathematical discourse? How might we
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design perceptual learning modules (Goldstone, Landy, & Son, 2010; Kellman, Massey, & Son, 2010) that use
rapid presentation of multiple exemplars to leverage powerful perceptual learning abilities to cultivate
conceptual knowledge? Are some nonsymbolic forms more accessible than others? How can we optimally
integrate multiple visual forms including nonsymbolic ratios to best illustrate the rational number mega-
concept?

Finally, how might we best use the nonsymbolic ratio subconstruct to make symbolic ratios, fractions, and
percents more meaningful to learners? Here it is especially important to recognize two conspicuous limitations
that nonsymbolic ratios have relative to symbolic numbers: First, despite their intuitive leverage, nonsymbolic
ratios still only provide only partial coverage of the rational number mega-concept. If adopted as an eighth
construct to Kieren’s (1976) list, the other seven are still symbolic in nature. Second, it is clearly the case that
learners must learn to engage with symbolically represented rational numbers to be mathematically literate.
After all, symbolic representations of rational numbers wield undeniable power and will continue to be the chief
currency of advanced mathematics and science. In the final analysis, the chief question is how to make those
symbolic representations meaningful instead of seldom understood and often feared. Fortunately, Ellis’ section
below offers some promising answers to a few of these open questions. Others remain open, and it is our hope
that this discussion will help spur future research that will result in more answers.

Ratio as a Mental Operation (Ellis)

I (Ellis) define ratio to be a multiplicative comparison of two quantities. Following Thompson and Thompson
(1992; Thompson, 1994), I consider ratio to be constituted in a learner’s mental operations grounded in images
of multiplicative comparisons and dynamic change. A ratio is not constituted in a situation, in a mathematics
problem, or in our environment. Instead, it is formed in one’s mental operations when comparing two quantities
multiplicatively: “Whether a quantity is a rate or a ratio depends on who is conceiving the situation and upon
how he or she happens to be thinking of it” (Thompson, 1993, as cited in Behr, Harel, Post, & Lesh, 1994). One
may compare how many times as big one quantity is compared to another, or one may unite two quantities into
a composed unit (Lamon, 1994) that can be iterated and partitioned while maintaining the invariant relationship
between the linked quantities. Many refer to the latter operation as proto-ratio reasoning (Lesh et al., 1988), but
in either case, one must simultaneously attend to two quantities. Further, I propose that one way to leverage
students’ perceptual, non-symbolic ratio sense is to ground ratio reasoning in images of dynamic change, in
which students can consider two quantities whose magnitudes vary together with the anticipation that the
invariant relationship does not change (Thompson & Thompson, 1992).

By quantities, I mean mental constructions composed of a person’s conception of an object, such as a piece of
string, an attribute of the object, such as its length, an appropriate unit or dimension, such as inches, and a
process for assigning a numerical value to the attribute (Thompson, 1994, 2011). Like ratios, quantities are not
constituted in our environment, but instead are conceptual entities. Many quantities are ones that can be
measured directly, such as length. Others, however, must be formed as a comparison. As Matthews noted
above when describing ratio as a quantity emerging from a comparative relationship, students can develop a
new quantity in relation to one or more already-conceived quantities. This formation does not necessarily have
to be multiplicative; for instance, one could compare two quantities additively by considering how much taller
one person is than another. However, there is a class of quantities called intensive quantities that can be

Natural Alternatives 30

Journal of Numerical Cognition
2018, Vol. 4(1), 19–58
doi:10.5964/jnc.v4i1.97

https://www.psychopen.eu/


conceived as a multiplicative relation, such as speed or steepness (Nunes, Desli, & Bell, 2003; Piaget &
Inhelder, 1975). It is these intensive quantities that are relevant to the formation of the ratio concept.

Thompson (1994) distinguished between the notion of ratio, in which a multiplicative relationship is constructed
between two static (non-varying) quantities, and internalized-ratio, in which the result of a multiplicative
comparison remains invariant, but the values of the related quantities vary. This latter notion has some
similarities to Kieren’s (1976) subconstruct #3, but with special attention to the variation of quantities. Harel et
al. (1994) exemplified this distinction in relation to constancy of taste. One can conceive of a ratio such as 3
cups of orange concentrate per 4 cups of water as a comparison of two specific collections, and one can even
think about the water as 4/3 as much liquid as the orange concentrate (or the orange concentrate as 3/4 as
much liquid as the water). As an internalized-ratio, however, one conceives of the same statement as a
representation of all possible ratios between two collections of orange juice and water, where the specific
values of the collections vary multiplicatively. Further, each of those ratios will represent the same
phenomenon, that of how orangey the mixture will taste. In the following paragraphs I propose a set of
instructional principles for developing ratio and internalized-ratio that draw not on natural number, but rather on
students’ abilities to perceive, isolate, and compare continuous quantities.

In order to form an intensive quantity and conceive of an internalized-ratio, one must form a multiplicative object
(Moore, Paoletti, & Musgrave, 2013; Saldanha & Thompson, 1998; Thompson, 2011), a conceptual uniting of
two quantities so that they are held in the mind simultaneously. The formation of such an object means that one
can choose to track either quantity’s value “with the immediate, explicit, and persistent realization that, at every
moment, the other quantity also has a value” (Saldanha & Thompson, 1998, p. 299), because they are coupled.
A person forms a multiplicative object from two quantities as a result of mentally uniting their attributes to make
a new conceptual object (Thompson & Carlson, 2017). However, the formation of a multiplicative object is not
trivial. Research on children’s understanding of ratio thoroughly documents the use of additive rather than
multiplicative strategies (e.g., Hart, 1988; Inhelder & Piaget, 1958; Karplus et al., 1983), as well as the
phenomenon of reasoning with only one quantity at a time rather than simultaneously attending to both (e.g.,
Noelting, 1980). These challenges pose obstacles for developing internalized-ratio, a key conceptual advance
for understanding proportion, rate, and function.

Building Ratio From Measurement of Magnitudes

Are there ways to better support children’s attention to quantities in ratio development? Above, Matthews
thoroughly documented the conceptual drawbacks associated with building ratio from natural number symbols,
but is there an alternate instructional route? Indeed there is precedent for developing early mathematical ideas
by building on children’s natural predilection for noticing and comparing quantities they encounter in their lives.
In particular, consider the Elkonyn-Davydov curricular approach, a first through third grade Russian curriculum
derived from the work of Vygotsky and Leontiev (Davydov, Gorbov, Mukulina, Savelyeva, & Tabachnikova,
1999). Researchers in the United States have subsequently developed a U.S. version of the Elkonyn-Davydov
curriculum called Measure Up, and have studied its effects on children’s algebraic reasoning (Dougherty et al.,
2010). These approaches rely on the notion that situating early mathematics in the comparison of non-symbolic
magnitudes creates favorable conditions for the future formation of the abstraction of arithmetic and algebraic
relationships (Davydov & Tsvetkovich, 1991). The Russian group and their U.S. counterparts begin with non-
symbolic continuous attributes, such as length, height, and volume, to model real number properties and
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operations. This approach is consistent with the notion that numbers are rooted epigenetically in reasoning
about quantities and their relationships (Thompson & Carlson, 2017). As Devlin (2012) argued, working with
non-symbolic attributes can lead to abstraction; one must think about the quantity itself, and its relation to other
quantities, without putting a number to it. In this manner the curriculum does not develop algebraic structure as
a generalization of number or the activity of counting discrete objects. Instead, it develops algebraic structure
from relationships between quantities (Schmittau & Morris, 2004).

The quantities children attend to in the Elkonyn-Davydov and Measure Up curricula are not built from counting;
instead, children begin by comparing properties of objects and representing such comparisons without
measuring them. Children come to school already attending to quantities and magnitudes in their everyday
activity. They make comparisons about who has more or less, who is taller than whom, and they perceive
amounts of extensive and intensive quantities. In the first grade, children are asked to identify which quantities
are less than, greater than, or equal to other quantities and then to express these comparisons without
assigning numbers to the attributes under comparison. Schmittau (2004) argued that when children do not have
access to numerical examples, they must rely on a theoretical understanding of the relationships in question.
Thus children’s nascent understandings of algebraic relationships are grounded in their attention to quantities in
their surrounding environments, actions on those quantities, and models of relationships between those
quantities.

With fractions and ratios, researchers using variants of the Elkonyn-Davydov curriculum have worked with
children to develop ratio reasoning from a basis of measuring continuous quantities rather than counting and
partitioning (Morris, 2000; Simon & Placa, 2012). Students are tasked with objectives such as selecting a length
of string that is the same length as a model on the other side of the room, but the model cannot be moved.
Thus they learn that one can compare two quantities indirectly through the use of a third quantity that can be
compared to both of the original quantities. Students develop the concept of measure, a unit of measure, and a
unit, making distinctions among the quantity being measured (such as length), the measure (such as a piece of
string), and the number used to designate the relationship between the two. Thus the concept of unit is
developed from the use of a chosen measure, and ad hoc units are present early on. This approach offers a
contrast to the typical treatment of measurement, in which children begin first with counting activities, working
with collections of discrete objects in which each whole object takes on the unit of one. Studies examining
students’ development of algebraic reasoning suggest that this approach, in contrast to a natural-number based
approach, may create a more flexible foundation for abstracting algebraic relationships (e.g., Dougherty &
Venenciano, 2007; Dougherty et al., 2010).

Within the Elkonyn-Davydov curriculum and its counterparts, the conceptual origin of ratio is a relationship
between two magnitudes. This is similar to Matthews’ description of ratio as a quantity that emerges from a
comparative relationship, with one important difference: Here, after engaging in activities of noticing and
comparing, children eventually quantify magnitudes with numbers. Critically, this quantification is built on a
foundation that draws on children’s proclivities to notice and assess magnitudes. In contrast, typical
approaches introduce fraction and ratio through partitioning, relying on a model of division that is inherently
discrete. When working with a continuous attribute, such as length, children can choose a measure that is any
size relative to the attribute being measured. The attribute being measured may not be an exact multiple of the
measure, which affords attention to the relationship between the change of numbers and the change of
measures. Further, it moves children out of the world of natural numbers and, at least mathematically, situates
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ratio within the reals in the sense that neither the value of the measure nor the measured must necessarily be
rational.

The above approach to ratio builds on children’s abilities to notice and perceive non-symbolic extensive
quantities such as length or volume. One could also extend this approach to connect to children’s perception of
non-symbolic ratios, or intensive quantities. For instance, as Matthews discussed, it may be fruitful to build
instruction on having children assess differences in ratio magnitude based on a perceptual comparison of
quantities (e.g., Abrahamson, 2012; McCrink & Wynn, 2007; Sophian, 2000). One could then develop a series
of activities in which children have to determine whether their perceptual assessments are valid. I suggest it
would be most effective to do this not with same-quantity comparisons in ratio perception (such as ratios
composed of pairs of line segments shown in Figures 1b and 2), but with ratios representing different-quantity
comparisons. For instance, consider the cases of speed, composed of time and distance, or of steepness,
composed of height and length. Given two subjects walking at constant speeds, children can easily determine
who is walking faster (Ellis, 2007a; Lobato & Siebert, 2002). Likewise, given two ramps, children can easily
determine which is steeper (Lobato & Thanheiser, 2002). The question is one of how to support students’
activities of appropriately mathematizing those perceptual experiences. How can you measure which person is
faster? What quantities make up the determination of speed, and how do you compare those quantities? A
great deal of work in mathematics education has occurred precisely in this area, studying ways to situate ratio
development in the mathematization of comparing intensive quantities (e.g., Harel, Behr, Post, & Lesh, 1994;
Kaput & Maxwell-West, 1994; Lobato & Siebert, 2002; Lobato & Thanheiser, 2002; Simon & Blume, 1994;
Thompson, 1994; Thompson & Thompson, 1992). However, this approach stands counter to the curricular
dominance of natural number-based tasks. More work is needed to better understand how to leverage both
students’ perceptual experiences and quantitative reasoning abilities and how to support teachers in
implementing such tasks. I propose that a particularly fruitful direction is in the development of internalized-ratio
rooted in the comparison of varying quantities.

Building Internalized-Ratio From Covariation

Thompson and Carlson (2017) suggest that the operation of dis-embedding an image of one quantity varying
(such as distance accumulating) from an image of another quantity varying (such as time accumulating) not
only marks the beginning of covariation, but is also at the root of the construction of intensive quantities. By
covariation, I refer to the mental activity of holding in mind individual quantities’ magnitudes varying, and then
conceptualizing two or more quantities as varying simultaneously (Saldanha & Thompson, 1998; Thompson &
Carlson, 2017). As researchers or instructors we can develop situations for students that introduce what we
conceive of to be constant rates, such as distance and time accumulating together, but it remains an open
question whether our students will conceive of those situations covariationally. How to support students’
conceptions of those situations through the mental activity of covariation in order to build up internalized-ratio –
and, more generally, function – is a persistent question that guides my research program.

Covariation is critical for developing an understanding of internalized-ratio, proportionality, and more broadly the
concept of function as a foundation for algebra and calculus. Thompson and Carlson (2017) argue that
variational and covariational reasoning are, at their core, fundamental to students’ mathematical development.
Students can and do reason statically about quantities, conceiving of them as unchanging. But it is also
possible for students to develop a conception of a situation that relies on a quantitative structure that supports
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an image of multiple quantities’ values varying in relation to that structure. Saldanha and Thompson (1998)
suggest that such images of covariation are, at least in part, developmental. Children may initially coordinate
the values of two quantities by thinking of one in isolation, and then the other, and then the first again, and so
forth. Subsequently, images of covariation appear to rely on an image of one quantity varying that contains an
implicit image of another quantity embedded within it (e.g., Ellis, Özgür, Kulow, Williams, & Amidon, 2015;
Keene, 2007; Lobato et al., 2012). Students must then undergo a conceptual shift in which they dis-embed the
image of the implicit quantity from the other quantity, becoming able to explicitly attend to the variation of both.

How can we foster the development of these quantitative images to support the construction of internalized-
ratio? A key component of such an endeavor is situating students’ mathematical activity, initially, in contexts
that are not reliant on a basis of counting, number, or even measurement. Removing students’ abilities to count
and therefore discretize continuous, changing, or unspecified quantities could potentially encourage the
construction of multiplicative objects. In fact, I propose that it may be helpful to introduce a variety of tasks that
encourage covariational reasoning in order to foster such a Way of Thinking (Harel, 2008) as a broad
conceptual foundation before then introducing students to particular quantitative relationships, such as those
represented by constant ratios. Here I will discuss two specific tasks that my project team and I have used in a
small-scale teaching experiment (Ellis, 2016). Neither task is specific to building ratio, but both were engineered
to foster covariational reasoning, which then served as a conceptual foundation for approaching later ratio
tasks.

The first task is the triangle/square task (Figure 5).iii Figure 5 contains four images that are screen captures of a
movie shown to students. In the movie, the point P travels along the perimeter of a square and sweeps out a
green triangle as it travels. It begins at the leftmost corner of the square, A. It travels along the bottom of the
square from A to B, sweeping out the triangle as it travels (Figures 5a and 5b). The point P continues traveling
from B to C, and from C to D in turn, continuing to sweep out the triangle (Figures 5c & 5d). The point P then
continues down the left side of the square, from D back to A. During this last portion of P’s journey, there is no
triangle.

Figure 5. Four screen captures of a movie of a point sweeping out a triangle.

In a teaching experiment (Cobb & Steffe, 1983; Steffe & Thompson, 2000) with two 7th-grade participants,
Olivia and Wesleyiv, I provided the students with the triangle/square movie and asked them to think about how
the area of the triangle changes compared to the distance P accumulates as it travels around the perimeter of
the square. It is possible for one to invent measures for the dimensions of the square and actually calculate
areas and distances, which would eliminate the need to simultaneously attend to the two varying quantities.
However, given my knowledge of Olivia and Wesley’s mathematical backgrounds and our prior experiences, I
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was confident that they would not do so. Indeed, both students attended to the changing area and the distance
traveled without making any measurements. Olivia and Wesley produced similar graphs comparing area with
distance traveled (see Figure 6 for Olivia’s graph). Olivia explained her thinking as follows:

So on the first increase, I thought that this, it gets from smaller to bigger [pointing from A to B], and then
here was sort of this [pointing along segment BC] because I thought that it would stay about the same
area. That’s just kind of how I saw it. And then it gets smaller [pointing from C to D]. And then it stays
the same at [points along segment DA], I see nothing.

Figure 6. Olivia’s graph comparing the triangle’s area to distance traveled

Explaining why she made the angled portions of her graph straight rather than curved, Olivia said:

I think because like here [points to A], it has no area, and here [drags finger towards B] it has a little bit
more. Like if you went up by increments here, maybe it would be, like, doubled, and so it kind of goes
up. Like kind of what we were talking about before. Here it would be a whole bunch of little lines
because it just kind of keeps going, but if it stopped, I imagine it going steadily up, like slowly getting to
half.

Olivia’s construction of the graph relied on a non-numerical image of comparisons as she thought about the
triangle’s area value changing; she could think about the triangle’s area increasing as P traveled, she could
think about it decreasing, and she could think about it remaining the same. Olivia later provided a geometric
argument for why the triangle’s area must remain the same as P traveled from B to C, but she could not explain
why she thought the rate of change of the triangle’s area from A to B and from C to D would be constant. Her
assumption that the triangle’s area changed at a constant rate relative to the distance P traveled, which
happens to be correct, was likely based on perception. In addition, because the value of P’s “distance traveled”
increased monotonically, the triangle/square task was an easier covariation task than many tasks of a similar
nature. Simultaneously attending to the triangle’s area compared to the changing distance between P and A
(around the perimeter of the square, not as the crow flies) was a more conceptually complex task, as evidenced
by Olivia’s initial and corrected graphs (Figure 7). Here, Olivia initially constructed the triangle, but on further
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reflection realized that the graph would actually be a parallelogram, which included the final leg of the journey
from point D to point A on the x-axis.

Figure 7. Olivia’s graph comparing the triangle’s area to the distance between P and A.

The triangle/square task encouraged the students to attend to two quantities that changed together. It is one of
a class of tasks that can potentially foster covariation by asking students to think about the changing values of
two quantities simultaneously, particularly when it is difficult or impossible to measure (and therefore discretize
and calculate with) the quantities’ magnitudes. The second task is the Gainesville Task, which we have
borrowed from Moore’s (2016) study in which he addressed the distinction of graphs representing figurative
versus operative thought (Figure 8). With this task, students must simultaneously attend to the car’s distance
from Gainesville and distance from Athens as it travels from Athens to Tampa and back. The Gainesville task
can be particularly effective in encouraging covariation because neither quantity is monotonically increasing;
thus, one cannot easily keep one of the quantities implicit in imagination. Further, neither quantity is perceivable
in the sense that students cannot see the relevant magnitudes, which removes measuring as an option. They
must instead mentally construct images of the quantities changing (contrast this with Carraher’s (1996) line
segment task, shown in Figure 2).

Figure 8. Moore’s (2016) Gainesville task.

Wesley’s graph (Figure 9) showed that he initially approached the graph in a traditional manner, thinking of both
quantities beginning from zero, but he quickly realized his error:

So I started by going like this (points to the line departing from the origin), but I had to get closer to
Gainesville so I’d have to be going backwards so I decided to start here (points to the non-origin point
on the x-axis). So then I’m getting closer to Gainesville and farther away from Athens. So it goes
higher. And then here on this part (pointing to the vertical line segment), you stay the same amount
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away from Gainesville but you keep getting farther away from Athens. And then on this part (pointing to
the angled line segment at the top of the graph) you get farther away from both.

Figure 9. Wesley’s graph comparing the distance from Athens to the distance from Gainesville

Building on a foundation of covariational reasoning, one can then shift to tasks that foster building internalized-
ratio as an invariant multiplicative comparison in which the related quantities co-vary. For instance, in the same
teaching experiment (Ellis, 2016), I introduced tasks in which students compared the changing area of a
rectangle compared to its distance swept as its length increased. Here, students familiarized themselves with
the context of sweeping out a rectangle of paint with a paint roller of unspecified height (Figure 10), and then
watched videos of paint rollers sweeping out rectangles. Finally, the students were asked to think about how
the area of the rectangle would change compared to the length swept.

Figure 10. Paint roller task.

By this point, the students were accustomed to attending to how two quantities varied together, and both
students graphed the area of the rectangle compared to the length swept as a straight line. Olivia explained, “I
sort of pictured it in my head…for every length that you’ve pulled, it should be the same amount of area.” Olivia
could imagine the change in area for an unspecified length (the “length that you’ve pulled”), but unitized the
length pulled to imagine how much area would be added for each same-increment amount of length. Wesley, in
contrast, invented specific values: “I decided I would think the height would be 1 meter…so like if you drag it out
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1 meter, so that the length is 1 meter and the height is 1 meter, and then to find the area you times the length
by the height which is one times one, is 1 square meter actually.” Before introducing specific lengths (which the
students called heights) for the paint rollers, I asked them to think about the rate of change of the area of a
rectangle made by a taller paint roller versus a shorter paint roller. Both students graphed steeper lines for the
taller paint roller (see Figure 11 for Olivia’s graph).

Figure 11. Olivia’s graph for the area painted versus the length swept for a shorter and taller paint roller.

Wesley compared the second unspecified height to his original 1-meter paint roller, and explained, “Because
since it’s, the height is bigger than 1 meter now, then for every length that you pull it out one meter, it gets more
area.” Similar to Olivia’s unspecified length increments, Wesley thought about 1-meter increments and then
could compare the amount of area being added for each rectangle while holding the length increment steady.
Olivia compared the area swept (which she referred to as the height of the wall) to the slope, stating, “The
steeper it is, the larger height of the wall it is.”

The ratio of area to length swept is a multiplicative invariant that depends on the height of the paint roller.
Thanks to multiple experiences with covariation tasks before encountering the paint roller task, Wesley and
Olivia could not only observe the quantities area and length varying together, but could also explicitly think
about both quantities changing. It was only then that they were introduced to tasks with specific numbers.
When considering paint rollers of specific heights, such as 10 inches or 16.25 inches, the students could
construct ratios as representations of various snapshots in the paint-rolling journey. For instance, consider a
paint roller that has swept a length of 20 inches to produce an area of 160 square inches. One could imagine
the ratio of 160 square inches: 20 inches as having swept out 8 inches in area for each inch in length swept,
but one could also conceive of the 160: 20 ratio as one of an equivalence class of ratios, each representing a
different point in the paint-rolling journey for an 8-inch paint roller. Further, the height of the paint roller does not
have to be a natural number, nor does the amount of inches swept. When one’s reasoning is grounded in
images of continuously changing quantities rather than discrete collections of sets, non-natural numbers do not
pose a problem. Students also have a conceptual foundation for making sense of how changing the magnitude
of one quantity or the other can change the value of the ratio.
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Another example in which students can reason about how changing initial quantities affects the value of a ratio
is from a different covariation context, this time with two spinning gears (Ellis, 2007a). In this teaching
experiment students developed ratios by comparing the simultaneous rotations of two connected gears, a large
gear and a small gear. Any pair of rotations represented a ratio that the students could consider as one
snapshot of a dynamic situation in which the two gears continuously rotated together. If the sizes of the two
gears remained the same, then any given rotation pair must represent the same ratio. Further, students could
think about how the gear ratio would change if one gear became twice as small, or twice as large. Here as in
the rectangle context, non-natural numbers did not pose difficulties for the students.

In the gear scenario, the students constructed a ratio as an emergent quantity (Ellis, 2007b). The emergent
quantity was gear ratio, or the relative size of one gear to the other as measured in a multiplicative comparison
of teeth. Harel and colleagues (1994) identified a key conception in developing internalized-ratio to be an
understanding of the (multiplicative) constancy of the relationship. Similarly, Simon and Blume (1994)
introduced the term ratio-as-measure, to describe the notion of a ratio as an appropriate measure of a given
attribute. One who conceives a ratio as an emergent quantity, that is, an attribute with a meaningful quantitative
structure in its own right, can anticipate individual values of the initial quantities changing while the emergent
quantity remains invariant. This way of reasoning can potentially be difficult if one has built up a conception of
ratio as a static comparison of discrete sets. In contrast, there is some evidence that students develop more
flexible ratio reasoning when they can conceive of an emergent quantity with contextual meaning, such as the
height of a paint roller, gear ratio, speed, constancy of taste, or steepness (Ellis, 2007b). Further, constructing
emergent-quantity ratios that represent conceptions of covariation better situates students to make sense of
function, particularly in terms of understanding constant rates of change in algebra, varying rates of change in
advanced algebra courses and beyond, and instantaneous rates of change in calculus.

Matthews asked how one might use nonsymbolic ratios as didactic objects to support mathematical discourse
in the learning of symbolic ratio. One potentially fruitful avenue is to leverage students’ perception and
mathematization of co-varying quantities. In the above examples, symbolic number was introduced late, after
students had constructed an invariant relationship between two quantities as they varied. Significant time and
attention was devoted to supporting students’ construction of multiplicative objects, and students had
opportunities to learn how to make sense of two quantities varying together before they measured anything.
Numbers then became expressions of magnitudes for the students, and thus were imbued with quantitative
meaning as representations of their intended referents. In contrast, beginning ratio instruction with natural
numbers situates ratio in the discrete world, as a static comparison of sets. It is difficult to then bootstrap up to
an equivalence class conception of ratio in which each component value can take on any real number. Situating
ratio instruction instead in contexts of variation and change can leverage students’ experiences with quantity
and variation in order to foster a more robust understanding.

Discussion

Building early mathematics concepts exclusively on natural number and count-based logic comes at a cost. We
have presented arguments that converge on this conclusion, despite substantial differences in our preferred
methods, contrasts in the types of warrants we choose for our claims, and disagreements in our general
epistemologies. Specifically, we have each argued that natural number concepts do not neatly align with the

Matthews & Ellis 39

Journal of Numerical Cognition
2018, Vol. 4(1), 19–58
doi:10.5964/jnc.v4i1.97

https://www.psychopen.eu/


structure of many foundational mathematical concepts, using ratio as a case for illustration. This misalignment
can impoverish mathematical thinking, standing as an obstacle to conceptual development. Consistent with this
critique, we have also sought to highlight the importance of embracing alternative methods of introducing early
mathematics concepts. Despite the present curricular primacy of natural number, other methods of
representation often exist for building early mathematics concepts. In particular, we have focused on
nonsymbolic representations, arguing that they a) may better leverage children’s intuitions built from everyday
experiences and b) may better align with the structure of some to-be-learned concepts.

At this point, however, we have yet to give an extensive treatment to the sometimes dramatic differences in our
theoretical perspectives and how a theoretical synthesis or interdisciplinary research project might be possible.
In what follows, we first attend explicitly to our points of divergence and the implications of this divergence for
our research questions and preferred methods. Next, we offer a detailed exposition of the potential for
synthesis in the face of this divergence. Finally, we conclude with a general consideration of several ways in
which collaborations among researchers with divergent theoretical commitments can help enrich inquiry.

Points of Divergence

1. Epistemological Divergence and Implications for Defining Ratio

In the test domain of ratio, we have pressed our arguments from significantly different epistemological stances.
In fact, our perspectives differ in fundamental ways that we have not fully reconciled. These differences have
implications for the definition of ratio itself: In particular, are ratios ‘constructed’, or are they ‘things in the world’?

Matthews’ argument is built on the notion that humans come equipped with a ratio processing system – a
primitive perceptual apparatus that is sensitive to ratio magnitudes. For Matthews, a full accounting of
mathematical knowledge involves both metacognitive and associative mechanisms (e.g., Crowley, Shrager, &
Siegler, 1997). That is, mathematical thinking clearly involves explicitly recognized conceptual knowledge,
procedural knowledge, and procedural flexibility (Schneider, Rittle-Johnson, & Star, 2011). However, beyond
this, it also involves associative mechanisms that operate below the level of consciousness. Accordingly,
mathematical cognition is implicated in ineffable production rules (Anderson, 1993/2014), and probabilistically
activated representations and strategies (e.g., Siegler, 1996). Moreover, it is integrally tied to perceptual
learning mechanisms that are at one and the same time both simple and capable of extracting deep conceptual
structures from a vast array of information (Goldstone & Barsalou, 1998; Kellman et al., 2010). In sum, this
conception of the human learner conceives of the learner as a computer – but not as a computer built from
silicon and wires. Instead, this computer is built from billions of neurons and trillions of synapses whereby
memories, knowledge, and even emotions are conceived of as patterns of neural activation. For some, this
account may seem de-humanizing, reducing human cognition to input-output patterns. For others – including
Matthews – it represents a productive world of nearly infinite possibilities, one that can support theorizing about
the constraints and potential of human cognition while allowing for incredible flexibility along the way.

From this perspective, human brains did not evolve to do mathematics. Instead, cultural inventions such as
mathematics and reading co-opt pre-existing brain systems to support new competencies (see Dehaene &
Cohen, 2007). Thus, it is important to see ratio as a salient feature given in the world, something to be
observed, like color or brightness (Jacob et al., 2012). Matthews considers ratio as a phenomenon that exists
independently of humans and can be passively observed by primitive cognitive endowments that we share with
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other animals like chimpanzees (Wilson, Britton, & Franks, 2002), lions (McComb, Packer, & Pusey, 1994), and
even ducks (Harper, 1982). It is a feature for which our perceptual apparatus has evolved sensitivity over
millions of years, and it seems only natural that we should try to leverage this capacity. On this view, ratio is
also a fuzzy concept that so seamlessly blends into other rational number concepts, such as fraction or
percentage, that they are effectively proxies for one another.

For Ellis, mathematical knowledge develops as part of a process in which children gradually construct and then
experience a reality as external to themselves (Piaget, 1971). This theory of knowing breaks with convention in
that knowledge does not necessarily reflect an objective ontological reality, but instead is considered an
ordering and organization of a world constituted by one’s experience (Von Glasersfeld, 1984). This stance does
not reject the existence of an objective reality and should not be confused with solipsism (for a detailed account
of this argument, see Von Glasersfeld, 1974). Rather, it posits that there is no way to obtain confirmation that
our knowledge is an accurate reflection of reality. In order to claim any sense of invariance between what we
perceive and what exists external to us, a comparison would have to be made, and we do not have access to
such a comparison. Consequently, the idea of a match with reality is replaced with that of fitness. Our
knowledge is viable if it stands up to experience, enables us to make predictions, and allows us to bring about
certain phenomena (Von Glasersfeld, 1984). It is an instrument of adaptation that enables us to avoid
perturbations and contradictions, but adaptive fit is not interpreted as a homomorphism.

Where the realist believes mental constructs to be a replica of independently existing structures, Ellis takes
these structures to be constituted by people’s activity of coordination (Von Glasersfeld, 1995). A knower’s
conceptual and perceptual activity is constitutive; in other words, our representations of our perceived
environments are always the results of our own cognitive activity. Percepts – even color and brightness – are
no exception to this. On this view, ratio is not something that exists external to humans that they passively
perceive. It is a mental operation coordinated from prior actions and operations (Piaget, 2001), which
necessarily entails effortful activity supported by meaningful instruction. This conception of ratio is clearly
defined and distinct from the concept of fraction.

2. Implications for Research

These differences in perspective naturally shape the research questions we each pose and the methods we
use to investigate them. Matthews begins by asking, how do human brains – these computers composed of
neurons – come to fluently understand concepts that they clearly did not evolve to support? From this
perspective, it is natural to focus on primitive sensitivity to nonsymbolic perceptual ratios that extends across
species and to ask how this sensitivity can be exapted for human use. Exaptation, a phrase coined by Stephen
J. Gould, refers to traits or features that were not built by natural selection for their current use, but have
affordances that organisms leverage for new functions (Gould & Vrba, 1982). Matthews begins by asking about
abilities and constraints of the cognitive system – conceived of as a thing in the world that evolved to perceive
things in the world – and thinks of education as a process that exapts these basic abilities to support
competence with cultural inventions such as mathematics and reading (see also Dehaene & Cohen, 2007;
Feigenson, Dehaene, & Spelke, 2004; Gelman & Meck, 1983).

On this view, the first step in theorizing about potential for learning is sometimes to identify and detail these
basic primitive abilities (e.g., sensitivity to nonsymbolic perceptual ratios). Methods for exploring these abilities
include using various tasks to measure the acuity with which people at various points in development can
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discriminate among nonsymbolic ratios that serve as analogs to specific numerical ratios. These tasks may
involve timed magnitude comparisons (e.g., Matthews & Chesney, 2015), choosing which of two alternative
choices matches a target (e.g., Boyer & Levine, 2012; Vallentin & Nieder, 2010), or having participants make
estimates using either symbolic numbers or by producing equivalent nonsymbolic ratios in alternative formats
(e.g., Meert, Grégoire, Seron, & Noël, 2012). Moreover, these tasks can be adapted to measure the extent to
which sensitivity to nonsymbolic ratios automatically affects other magnitude comparisons (e.g., Fabbri,
Caviola, Tang, Zorzi, & Butterworth, 2012, Matthews & Lewis, 2017). Finally, correlational studies (e.g., Fazio,
Bailey, Thompson, & Siegler, 2014; Jordan, Resnick, Rodrigues, Hansen, & Dyson, 2017; Matthews, Lewis, &
Hubbard, 2016) can help reveal whether and how perceptually-based nonsymbolic ratio abilities are related to
competence with symbolic ratios and other rational numbers. Each of these methods relies on a large number
of data points to support statistical inference about the extent to which samples of people at different ages
demonstrate sensitivity to nonsymbolic perceptual ratios in the world.

In contrast, rather than taking ratio as given and studying how well students perceive, leverage, or manipulate
ratios and their associated concepts (or how they can be trained to improve in these tasks), Ellis investigates a
different set of questions: What do students construct as ratio? What is the structure of the epistemic student’s
(Steffe & Norton, 2014) mathematical world? In building models of student thinking, what are the possible
operations and images entailed in developing a productive ratio concept? How can instruction foster that
conceptual development?

The methods appropriate for addressing the above questions include the design and analysis of a) written
assessments (e.g., Cooper et al., 2011; Knuth et al., 2012; Lockwood, Ellis, & Knuth, 2013), b) structured or
semi-structured clinical interviews (e.g., Ellis & Grinstead, 2008; Lockwood, Ellis, & Lynch, 2016), and c)
teaching experiments (e.g., Ellis et al., 2016; Ellis et al., 2015; Ellis, 2011). Written assessments can provide
data on students’ current ways of operating, and can also be fruitful for identifying common strategies and
errors. An advantage of assessment data is that, unlike clinical interviews or teaching experiments, written
assessments afford the analysis of large data sets, lending statistical validity to findings. In order to address the
finer-grained questions about students’ conceptual operations, Ellis relies on clinical interviews and teaching
experiments. Clinical interviews (Bernard, 1988; Clement, 2000; Schoenfeld, 1985) involve designing
mathematical tasks, asking students to solve those tasks, and eliciting students’ ideas with appropriate
extension questions. Designed to help the researcher understand and characterize students’ concepts of ratio,
clinical interviews provide a snapshot of the participants’ current ways of operating. A semi-structured interview
affords the researcher a fair degree of freedom in following a student’s line of reasoning, improvising new tasks,
and creating and testing hypotheses about the student’s understanding on the spot (Ginsburg, 1997).

In order to investigate the nature of student learning and the development of concepts over time, some
mathematics educators rely on the teaching experiment (Cobb & Steffe, 1983; Steffe & Thompson, 2000).
Teaching experiments often leverage initial findings from written assessments and clinical interviews in order to
develop a tentative progression of tasks. Researchers then work with a small number of participants (although
this number can range from 1 to an entire classroom of students) over an extended number of sessions in order
to develop models of student thinking and learning through teaching interactions. The teaching experiment
method demands a flexibility requiring any initial sequence of tasks to serve only as a rough model of
instruction. During and after each session, researchers will engage in iterative cycles of teaching actions,
formative assessment and model building of students’ thinking, and revision of future tasks and invention of
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new tasks on an ongoing basis. This flexibility enables the ongoing development, testing, and revision of
hypotheses about students’ conceptions throughout the data collection process.

Towards Synthesis – From Conflict to Complementarity

These differences noted, we argue that the very divergence in our questions and methods holds much
productive potential. Multi-method techniques have long been theorized to be good ways to build richer
understandings of complex constructs (e.g., Brewer & Hunter, 1989; Johnson & Onwuegbuzie, 2004).
Unfortunately, research methods are in large part dictated by the theoretical commitments of investigators.
Thus, to date, the rich classroom experiments preferred by Ellis and the basic cognitive tasks privileged by
Matthews have de facto been cast as incompatible or mutually exclusive methodological choices. This need not
be the case. Indeed, perhaps the most powerful experience in the current collaboration has been that it
required each of us to consider seriously the merits in the other’s method. It would be inaccurate to describe
the result as a theoretical sea-change for either, but it has certainly piqued interest, prompted theoretical
elaboration and led to new questions. We briefly adumbrate a couple of ways that the collaboration has led to
some convergence below.

Convergence on ratio. On first glance, the differences in the definition of ratio that we each advance might
appear to be one of our most intractable disagreements. After all, one of us has explicitly argued that ratios are
things in the world and the other has argued that they are not. However, there is much more common ground
here than initially meets the eye. On the one hand, Matthews now acknowledges the value of thinking about
ratio as human-constructed multiplicative mathematical object. Indeed, this recognition is at the core of his call
for methods to “mathematize” ratio. On the other hand, Ellis now acknowledges the value of attempting to
leverage perceptual experience. In fact, this recognition is part and parcel of her pedagogy described above,
which relies heavily on using students’ perceptions of dynamic motion to promote reflection on the nature of
covariation. In the final analysis, the disagreement is less about the foundations of each other’s arguments and
more about the proper use of the term ‘ratio’.

This appears to be a classic case of what Wittgenstein (1953/2001) referred to as “bumps that the
understanding has got by running its head up against the limits of language” (p. 41). In the respective sections
above, for Ellis the term ratio was technical and precise, referring to a very specific sort of mathematical object,
whereas for Matthews the term referred to something broader and fuzzier that is even somewhat accessible to
non-human animals. We have realized much of the tension in our approaches is resolved if we distinguish
between two concepts that we might refer to as “perceived ratio,” which is chiefly nonsymbolic and
approximate, and “mathematical ratio,” a precise, language mediated concept. In coming to understand that we
were referring to two related but somewhat distinct constructs, a common question emerged: How can we help
learners leverage perceived ratio to build mathematical ratio? Several potential strands of research questions
naturally branch off from this larger guiding question, questions that our divergent methodologies might
combine to explore in complementary ways. Below we will elaborate on one such question and allude to a few
more.

How might we leverage perceptual learning using nonsymbolic perceived ratio to help provide a foundation for
constructing mathematical ratio? Researchers interested in perceptual learning have long argued that
perception is not simply synonymous with low-level sensation, but is highly selective and can be a source of
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complex and abstract understandings (Barsalou, 2008; Gibson, 1979/2014; Goldstone & Barsalou, 1998;
Goldstone, Landy, & Son, 2010; Kellman, Massey, & Son, 2010). It would be interesting to use perceptual
training from cognitive science to facilitate intuitive understanding of perceptual ratio and to adopt techniques
from mathematics education research to scaffold construction of mathematical ratio from naïve foundations in
perceptual ratio.

For example, consider the dynamic perceptual ratio matching task shown in Figure 12. In this example,
students are presented with a target nonsymbolic ratio composed of line segments on the left and encouraged
to manipulate the length of the orange line segments to create a match on the right. Upon completion, the
student is given immediate feedback regarding a properly constructed match. Because the target and the
response vary with regard to the absolute size and alignment of component line segments, there are relational
features of the stimuli that must covary in specific ways (i.e., the orange:blue length ratio) to maintain
equivalence of the perceptual ratios involved. Over a multitude of trials, such practice might help tune students’
perceptually-based intuitions to the relations among those core features. When coupled with appropriate
prompts, the use of the displays could facilitate rich conversations that can help make explicit the intuitions
behind the perceived equivalence. This in turn might help transform a naïve sensitivity to equivalence among
perceptual ratio stimuli into a conscious appreciation of a ratio as a mathematical object.

Figure 12. Sequential screenshots from a dynamic perceptual ratio matching task. (a) Participants are initially presented
with a target ratio composed of line segments on the left side of the screen along with an incomplete ratio to the right.
Participants are asked to adjust the components of the incomplete ratio so that the two match. In this case participants are
asked to adjust the length of the orange bar to try to make the orange:blue line ratios match. (b) Once the participant
submits a response, the computer gives feedback on what the correct answer would have been (farthest right). In this case,
the red box lets the participant know that their submission (center) is quite far from the correct value. Note that for these
ratios, the jitter between orange and blue lines is an irrelevant dimension that ensures participants cannot make a match by
simple scaling of an identical figure.

The above-described matching tasks would enable us to not only identify how well students perceive equivalent
ratios, but also potentially to foster better attention to and conscious appreciation of perceptual intuitions over
time. Interviewing a subset of the participants would provide additional data about the particular relational
features students consciously attend to, the manner in which they attend to the simultaneous changes in the
lengths of the provided lines, and the concepts on which they draw when constructing ratio matches. The
combined data from the dynamic perceptual ratio matching tasks and clinical interviews would then inform the
development of a hypothetical learning trajectory (Clements & Sarama, 2004; Simon, 1995) for building
internalized-ratio through covariation. This hypothetical trajectory would include a set of potential tasks and
activities and associated conceptual stages through which we predict students would progress. We could then
test this designed intervention in a series of teaching experiments, relying on quantitative pre- and post-
assessments to triangulate findings from the qualitative data.
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This is but one example of many questions of mutual interest in this domain that might be more profitably
investigated by the cooperation between our disciplines than if we continued to conduct research in our
respective silos. Others include: Are some quantities more optimal than others for helping learners develop
mathematical ratio through observing covariaton? How do students’ perceptual intuitions about ratio affect the
quantities they attend to when constructing mathematical ratio? Can we measure how integrating measures
from mathematics education researchers with those from psychologists might provide more resolution for
measuring rational number knowledge than either used in isolation?

This is not to suggest that integrating methods will completely bridge the theoretical and methodological divides
between us. In the final analysis, some of our prior theoretical commitments may be irreconcilable, and the key
is accepting this fact and moving on in spite of such differences. Our fields stand to profit in several ways from
embracing methodological pluralism and forging on with such integrative projects. By incorporating different
methods, we generate enriched data sets that we can each use within our preferred analytics. That is,
independent of deep theoretical shifts, the presence of more abundant data obtained by more varied measures
can present a larger space for inquiry for our preferred analytics. Second, in sharing data and perspective, we
create real reflexive opportunities that can lead to genuine shifts in theoretical perspective. Surely the reach of
such shifts will be limited somewhat by the depths of our commitments, but the potential remains significant
despite these constraints. Third, although our methodological orthodoxies may constrain our abilities to push for
a deep synthesis, those steering conventions need not limit our students in the same ways. By offering
emerging researchers the opportunities to analyze phenomena of interest through different lenses, we create
the possibility that our trainees may produce a more profound synthesis.

A Final Note on the Collaboration

With this project, we have not resolved all of our disagreements, nor do we think this would have been a
realistic goal. Our epistemological orientations are far enough apart that hope of substantial reconciliation is
probably chimerical – and we feel this is not unusual (but also not inevitable) for cognitive psychologists and
mathematics education researchers. Still, we have found substantial common ground on a topic that is of great
importance for each of us and for our respective fields. In the process, we have each gained considerably by
engaging with the other’s mode of thought. We have grown, and our work is richer as a result. It is our sincere
hope that this can be a model for collaborations between mathematics education researchers and
psychologists more generally. Each has its unique insights, and each has its blind spots. By working across
boundaries, and learning to bracket our differences, it may be that focusing on our points of convergence can
lead to new productive points of inquiry. In this fashion, we might hope to more exhaustively investigate
constructs of mutual interest and to push knowledge further.

Notes

i) The natural numbers are typically defined either as the set of non-negative integers (e.g., 0, 1, 2, 3…) or the set of
positive integers (e.g., 1, 2, 3,…). For the purposes of this paper, we mean the set of positive integers when we refer to
natural numbers.
ii) Smith (2012) defines continuous quantities to be unitary objects that can be measured, whereas discrete quantities are
collections of countable objects.
iii) Thanks to Brandon Singleton for developing the triangle/square task.
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iv) Olivia and Wesley are gender-preserving pseudonyms.
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