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Abstract

Mental Abacus (MA) is a popular arithmetic technique in which students learn to solve math problems by visualizing a physical abacus
structure. Prior studies conducted in Asia have found that MA can lead to exceptional mathematics achievement in highly motivated
individuals, and that extensive training over multiple years can also benefit students in standard classroom settings. Here we explored the
benefits of shorter-term MA training to typical students in a US school. Specifically, we tested whether MA (1) improves arithmetic
performance relative to a standard math curriculum, and (2) leads to changes in spatial working memory, as claimed by several recent
reports. To address these questions, we conducted a one-year, classroom-randomized trial of MA instruction. We found that first-graders
students struggled to achieve abacus expertise over the course of the year, while second-graders were more successful. Neither age group
showed a significant advantage in cognitive abilities or mathematical computation relative to controls, although older children showed some
hints of an advantage in learning place-value concepts. Overall, our results suggest caution in the adoption of MA as a short-term
educational intervention.
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Mental Abacus (MA) is a popular technique for supplementing elementary school mathematics education,
especially in Asian countries, where there is a tradition of abacus use in schools and businesses (Li, 1959).
Students of MA begin by learning to make rapid arithmetic computations on a physical abacus, a device which
likely descended from early Greek and Roman counting boards and which has been used in Asia since at least
1200 AD (Ifrah, 2000; Menninger, 1969). With practice, students then learn to construct a mental representation
of the device, allowing them to move the beads “in their mind,” without reference to the physical device (Figure
1; Frank & Barner, 2012; Hatano, Miyake, & Binks, 1977; Miller & Stigler, 1991; Stigler, 1984). Skilled MA users
can accomplish astonishing feats, and have used the technique in recent years to win international
competitions, like the World Cup of Mental Arithmetic. Young children trained in MA are able to rapidly add,
subtract, multiply, and divide large numbers using MA, and can even learn to compute square and cube roots.
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Figure 1. A typical abacus consists of several vertical columns upon which beads move freely. A horizontal beam divides
each column into an upper and a lower deck. Each column has 4 or 5 beads on the lower deck (“earthly beads”) and 1 or 2
beads on the upper deck (“heavenly beads”). On a column chosen by the user, each bead in the lower deck represents a
cardinality of one, and each bead in the upper deck represents five. Lower deck beads on the next column to the left

represent multiples of 10 (and 50 on top), and beads on the next column represent multiples of 100 (and 500 on top), etc.
Beads are “in play” (contributing to a numerical representation) when moved towards the central beam.

Earthly Beads (value = x1)

Previous studies have argued that the unusual abilities of MA users stem from the format of MA computations,
which are thought to be supported by gestural and visuospatial representations. Following early studies by
Hatano and colleagues (Hatano, Miyake, & Binks, 1977), in our previous work we examined effects of verbal
and motor interference on MA calculation (Brooks, Barner, Frank, & Goldin-Meadow, 2017; Frank & Barner,
2012). While naive control participants were much more disrupted by verbal interference, MA users showed
larger interference effects for manual interference. In addition, a growing neuroimaging literature suggests that
MA computations are associated with regions that support spatial and visual working memory (Chen et al.,
2006; Du et al., 2013; Hanakawa, Honda, Okada, Fukuyama, & Shibasaki, 2003; Hu et al., 2011; Li et al., 2013;
Li, Chen, & Huang, 2016; Tanaka, Michimata, Kaminaga, Honda, & Sadato, 2002).

Both the structure of the abacus itself and MA users’ computational limits are consistent with known limits to
visual working memory. Like other attested abacus systems found in the human historical record, the Soroban
abacus represents number by chunking beads into small sets of 4 or 5, which corresponds to the hypothesized
capacity limits described in the visual attention literature (e.g., Alvarez & Cavanagh, 2004; Atkinson, Campbell,
& Francis, 1976; Luck & Vogel, 1997; Todd & Marois, 2004). Furthermore, users of MA appear to be limited to
representing 3 or 4 abacus columns at a time, suggesting that each abacus column is represented as a distinct
“object” in visuospatial working memory (Frank & Barner, 2012; Stigler, 1984). These facts suggest that MA
builds on the visuospatial capacities of learners by transforming a serial linguistic process into a potentially less
constrained visual workspace, and thereby linking abstract symbolic mathematics to concrete representations
of objects and sets — a strategy often used in math education outside of MA, in the form of simple manipulative
systems (Ball, 1992; Hatano, Amaiwa, & Shimizu, 1987; Uttal, Scudder, & DeLoache, 1997).

The apparent reliance of MA expertise on visuospatial working memory raises questions about its potential
utility as an educational tool for typical K-12 students (the main question of the present research). In most
previous reports of MA expertise, students were self-selecting, highly motivated learners, who may have been
especially predisposed to learning math in a visuo-spatial format (Frank & Barner, 2012; Hatano, Miyake, &
Binks, 1977; Huang et al., 2015; Stigler, 1984; Stigler, Chalip, & Miller, 1986). Consequently, these studies left
open the question of whether MA can be effectively implemented in the classroom environments that serve
broader and more representative groups of elementary school children, where significant variability in visual

Journal of Numerical Cognition @ 1
2017, Vol. 3(3), 540-558 PsychOpen
doi:10.5964/jnc.v3i3.106 publishing psychology


http://www.psychopen.eu/

Assessing Mental Abacus in Elementary Students 542

working memory abilities exist. Can MA be learned by typical groups of K-12 students, or is it best suited to
highly motivated students with especially strong visual working memory abilities?

In one recent study (Barner et al., 2016), we began to explore this question by assessing the effects of MA in a
three-year randomized controlled trial. In that study, we tested 190 elementary school students in Gujarat, India
(aged 5 to 7 years at outset), and compared the effect of three years of weekly MA training (3 hours per week)
to equivalent amounts of additional standard math curriculum. At the end of 3 years, we found significant
advantages due to MA training on a number of mathematics measures, including the Woodcock-Johnson Il
and WIAT. However — consistent with the hypothesis that MA might be most beneficial to children with high
visuo-spatial working memory — we also found that improvement was mediated by children’s individual visual
working memory capacities at the beginning of the study. We also tested for whether MA led to advantages by
decreasing children’s anxiety about mathematics, but found no support for this hypothesis.

In addition to making claims about its efficacy as an educational intervention, some recent studies have claimed
that MA training may result in changes to working memory, given its visuo-spatial format (Dong et al., 2016; Na
et al., 2015; Wang et al., 2015). However, support for this claim has been mixed, owing to the relatively small
samples tested and the presence of mixed results across studies. For example, in one recent study (Dong et
al., 2016), 36 adult subjects were divided into two groups who either received no training, or were given 90
minutes of MA ftraining per day for 20 consecutive days. At the end of the study, the authors found that MA-
trained participants performed significantly better at a digit span task, but not a letter span task, relative to
controls (the latter task exhibited a marginally significant effect, with no difference at the end of the study
between groups). Also, they found a difference between groups on a 4-back task, but not a matched 2-back
task. Another study, by Wang et al. (2015) used a slightly larger design, and divided 70 7-year-old children into
two groups, one of which received three years of MA training, for 2 hours per week. After three years of
training, the MA group showed relatively greater mathematics ability. However, the effects of training on other
cognitive abilities was mixed. Although Wang et al. found main effects indicating differences between the
experimental and control groups on cognitive tasks, as well as within-group improvements in the MA group,
critically, there were no group by time interactions for cognitive tasks, as would be required to support the
conclusion that group differences actually resulted from MA training. Thus, although these reports are
intriguing, they fall short of the standard required to show strong evidence for “cognitive transfer’ effects
(Simons et al., 2016).

As MA grows in popularity internationally, it has begun to appear in the United States, and has been introduced
to multiple public schools to supplement existing mathematics instruction. This turn of events raises the
question of whether MA can be implemented effectively in the context of the US public school system, and
whether it compares favorably to alternative enrichment programs. Our past work leaves this question open for
a number of reasons. First, our previous study was conducted at a private charitable school, which was able to
adjust its curriculum to accommodate intensive MA training and provide substantial and ongoing teacher
training in how to accommodate MA in the curriculum. Thus, it remains unknown whether the schedule and
resources of a typical US public school can accommodate a novel technique like MA. Second, although our
previous study was conducted at a private school, it served a population of very low-income families, and
featured very large class sizes by US standards — around 60 — 70 students per class. Therefore, while the
school had more flexibility to introduce MA, the students may have been less prepared for training than typical
US students and may have received relatively little teacher attention, raising the possibility that US students

Journal of Numerical Cognition @ i ain
2017, Vol. 3(3), 540-558 PsychOp
doi:10.5964/jnc.v3i3.106 publishing psychology


http://www.psychopen.eu/

Barner, Athanasopoulou, Chu et al. 543

could benefit more, or with smaller amounts of training. Relevant to this suggestion, in that previous study, we
not only found that our sample’s visual working memory capacity was predictive of their MA uptake, but also
that overall their visual working capacity was quite low relative to comparison samples from higher socio-
economic status Indian children. Third, because of the large class size, a small number of teachers were
responsible for MA instruction. Thus, we were not able to test for the generality of intervention benefits across
classrooms.

In the present study, we investigated the potential effectiveness of MA in the US context by conducting a one-
year, classroom-randomized trial of MA instruction in a Northeastern US public school. Classes were randomly
assigned to either maintain their standard math curriculum (Common Core Singapore Math; Control) or to
receive a mixture of their standard math plus MA training. We assessed performance during the first week of
classes, before MA was administered, and near the final week of classes, after children in the treatment group
had received a full academic year of training.

Our study had two main goals. First, we asked whether a group of US school children (N = 180) would
experience greater benefit from MA training than from equivalent hours of standard math curriculum. This first
goal was applied. Our interest was in whether MA instruction — as implemented by a standard commercial
provider — would be sufficient to lead to benefits for students, either through increases in calculation abilities or
decreases in math-related anxiety. We were not attempting to provide a “proof of concept” that optimal
instructional practices could lead to benefit for some populations, as prior work has already provided some
evidence of that claim (Barner et al., 2016; Stigler et al., 1986). Second, we also explored a theoretical
question, and tested the claim that even modest amounts of MA training might yield benefits to visuo-spatial
working memory abilities. Although “far transfer” — i.e., general improvements to spatial working memory from
focused practice on a particular task — is generally thought to be rare (Simons et al., 2016), the studies
reviewed above often report differences in performance on classic tests of spatial working memory after even
small amounts of MA training. We reasoned that if these effects are reliable and strong enough to be of
significance to educational practices, then they should also emerge in a longer study with a larger number of
participants, like ours.

Methods

We conducted a classroom-randomized evaluation of MA training in Grades 1 and 2 in a large elementary
school. Classes were randomly assigned to a Control group who received their standard math curriculum
(Common Core Singapore Math) or an experimental group who received the same number of hours of
instruction but divided between their standard curriculum and mental abacus. We assessed student
performance during the first week of school, prior to MA instruction (pretest) and then at the end of the school
year (posttest). Students were assessed at both time periods on measures of mathematics knowledge and on
general cognitive measures (spatial working memory, executive function, and general reasoning). At posttest all
students completed a measure of math anxiety. In addition, as a test of MA curriculum uptake, those students
in the MA group were also tested on their ability to read an abacus.
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Randomized Design and Curriculum

We partnered with a large school in a Northeastern US state, located in a large metropolitan area. The school
was ethnically and socioeconomically diverse, with 67.1% of students eligible for free or reduced lunch in 2012
and > 90% black or Hispanic students. Prior to study initiation, we received a list of classrooms (N = 24) in
Grades 1 and 2 and randomly assigned the classes to Control or MA conditions. We included inclusion
classrooms (which contained some high-functioning children with developmental disabilities, N = 5) and dual
language/bilingual transition classrooms (Spanish/English, N = 8); the remaining classes were general
education (N = 7). After consultation with teachers and school administration, we excluded self-contained
special education classrooms (N = 4). We communicated classroom assignments to a for-profit company who
had already contracted with the school to provide teacher training in the MA curriculum. This company provided
training to the relevant teachers in the first week of the school year as well as curriculum materials and
supervision during the school year (with relatively frequent visits to check on classrooms’ progress). Because
both teachers and the MA curriculum developers were aware of the study design, this study (as with many
educational interventions) was not fully blinded: teachers’ expectations could be related to student
performance. However, in an effort to diminish bias by researchers administering outcome measures, all
researchers remained blind to participant condition during testing. Student assignment to condition was
revealed only prior to administering the MA posttest measure (the final measure administered, and only to the
MA group, hence the need for unblinding).

Students in the Control group followed their standard, existing “Singapore Math” curriculum. Singapore Math
focuses on a gradual transition between concrete and abstract representations, and often makes use of
concrete visualizations of problems (e.g., using schematic diagrams). Standard math class was scheduled daily
for one period per day (40 min). The MA training group received three periods per week (40 min each) of MA
training from their own teachers, using external curriculum materials; the remaining two periods per week were
used for standard Singapore Math instruction, using the same materials as the control group. The MA materials
focused first on the introduction of the physical abacus, and then on the basics of the MA technique.
Specifically, children in Grade 1 learned addition using the complement of 5 (to prepare them for MA addition,
which requires this skill for the use of the top bead, which denotes 5). By the end of the year, some could do
mental abacus computations using both bottom and top beads. Children in Grade 2 learned addition using the
complement of 10 (to prepare for multi-column abacus problems) and some could do mental abacus addition
using the complement of 5.

Participants

We sent consent forms home with all students in Grades 1 and 2 and followed up with several school-wide
announcements. All children from participating classrooms were enrolled in the study if they had valid consent
forms, though a small number were sick or otherwise absent and were not tested in particular tasks or at both
time points. Participants were only included in analyses if they had been tested at both time points. We also
received some consent forms from children in excluded classes. Table 1 and Table 2 give an overview of the
number of participants in different groups in the study.
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Table 1

Participants in the Study

Group Grade Children Enrolled Consent Form Received Data Collected
Control 1st 103 49 (48%) 26

2nd 89 51 (57%) 44
Mental Abacus 1st 95 46 (48%) 35

2nd 114 70 (61%) 59
Table 2
Demographic Description of Participant Groups

Control Mental Abacus

Descriptive statistics Grade 1 Grade 2 Grade 1 Grade 2
N Participants 26 44 35 59
Mean age 6.52 7.56 6.37 7.46
Median Age 6.49 7.51 6.32 7.41
Std. Dev. Age 0.39 0.41 0.29 0.36
N Hispanic 15 20 14 26
N African-American 7 13 11 24
N Mixed Race/Other 4 11 10 9

Measures

Students were tested twice: Once at the beginning of the school year and once at the end. In each case, all
students were tested during a 4 to 5 day period. Testing was performed in the school library or unused
classrooms, using portable laptop computers for the cognitive assessments. Students completed tasks in
groups of 2 — 4 over the course of one or two sessions, totaling about 45 — 60 minutes. Cognitive assessments
were given first, then mathematics assessments.

Cognitive Assessment

We administered a short battery of cognitive assessments to test for cognitive transfer (see Supplementary
Materials: Cognitive Assessment Tasks). The first was a continuous performance go-no-go task in which
students had to press a key to indicate a target (roads) and not for a distractor (mountains) (Corkum & Siegel,
1993). Students completed 100 test trials lasting 1200ms each, with a set of slower initial practice trials to allow
students to familiarize themselves to the task. Distractors appeared on 20% of trials. The second task was a
spatial working memory change detection task, in which students had to track gradually longer sequences of
locations in a spatial grid (see details in Barner et al., 2016). The third was a computerized forced-choice matrix
reasoning task based on Raven’s progressive matrices (Raven, Raven, & Court, 2003), which continued until
students reached 36 questions or made three mistakes sequentially.

Mathematics Assessment

All students completed three short assessments. The first was the Woodcock-Johnson I1ll standardized
measure, a two-page battery ranging from simple arithmetic to much more advanced high-school topics (5
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minutes). The second was an in-house assessment of conceptual understanding of place-value, a foundational
math concept that is part of the Common Core curriculum for Grades 1 and 2. The task required filling in the
missing quantity in a place-value decomposition (e.g., 400 + _ + 1 = 451) (5 minutes, reported in Barner et
al., 2016). The third was an arithmetic fluency measure, which included 48 basic arithmetic problems to be
completed in a short period (5 minutes). This measure was designed to allow MA-trained children to
demonstrate their fluency with simple arithmetic and was included because it showed the largest training effect
in our previous study.

MA Intervention Fidelity

To test children’s uptake of MA, we administered an in-house assessment of abacus translation (measuring the
accuracy and speed with which children can translate from an abacus state to Arabic numerals). Children had 5
minutes to complete 23 problems.

Math Anxiety

We assessed math anxiety using a questionnaire adapted from Ramirez, Gunderson, Levine, and Beilock
(2013). Consistent with our previous work (Barner et al., 2016), we included this measure both to test whether
MA caused differences in anxiety and also as a control measure to ensure that differences between groups
were not caused by MA students having reduced anxiety, rather than by changes in actual ability. This
questionnaire presented a set of 16 mathematics questions and asked students to rate their anxiety regarding
each problem using a 5-point Likert scale.

Pre-registration and Analytic Strategy

Confirmatory analyses specified below were pre-registered at the Open Science Framework (see
Supplementary Materials: Pre-Registration). Because we were not certain what dependent measures would be
feasible to administer during our pretest visit, we collected data and analyzed our pretest results prior to
registration. We then registered our hypotheses regarding posttest analyses prior to posttest data collection.
Throughout we denote planned (registered) analyses as “confirmatory” and post-hoc analyses as “exploratory.”
We also distinguish “primary” analyses, which are tests of the direct effects of the intervention, from
“secondary” analyses, which are tests related to the mechanism of action for the intervention.

All measures were normalized into the unit interval for ease of comparison and interpretation. In general, we
normalized by the total number of questions on a measure. Since no child was able to answer questions on the
second page of the Woodcock-Johnson Il (which includes fractions, negative numbers, etc.), we included only
the first page, containing 25 questions. For the Go/No Go task, we used accuracy on “no go” trials. For spatial
working memory, we normalized spans arbitrarily by dividing by 10; this decision does not affect any statistical
analyses and was made to simplify visualization.

As in our previous work (Barner et al., 2016), we conducted separate mixed effects regression analyses with
each of the mathematics and cognitive outcome measures as outcome variable. The form of these models was:

outcome ~ grade + year * intervention + (1 | subid) + (1 + year | class)

The key coefficient in these models was the year-by-intervention interaction term, capturing the possibility of a
greater increase in the outcome measure as a function of random assignment to intervention group. The
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random intercepts for each participant control for participant-level individual differences, and the random slopes
and intercepts for classes capture different baseline levels and growth patterns across classes.

Results

Descriptive Analyses

We had six primary outcome variables, corresponding to our six tasks: Three mathematics measures
(Arithmetic, Place Value, and the standardized WJ Ill assessment) and three cognitive measures (Matrix
Reasoning, Go/No Go, and Spatial Working Memory). The distribution of outcome variables for each task is
shown in Figure 2. Performance on all measures was better for second graders than for first graders, and all
measures showed positive growth over the course of the school year. Some showed larger changes than
others due to features of the tasks themselves. For example, the place value measure was explicitly designed
to capture content being learned during these two years of schooling and thus showed substantial movement
(its distribution was also idiosyncratic because an understanding of two-place place-value would allow a
student to complete a particular subset of questions). In contrast, the Go/No Go and Spatial WM tasks showed
smaller changes relative to the amount of individual variation that we saw.

Arithmetic Place Value wWJ Matrix Reasoning Go/No Go Spatial WM
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Figure 2. Histograms showing the distribution of scores from each task in our battery, split by grade level. Dashed lines
show means. Upper panels show pre-test scores; lower panels show post-test scores.

All tasks showed evidence of modest test-retest reliability across the school year (range = .30 — .63, see Table
3), comparable to the reliability found in our previous work (Barner et al., 2016). Higher reliability would of
course increase our power to detect condition effects, but would be difficult to achieve without substantially
longer testing sessions. In addition, test-retest correlations were likely depressed because of real changes over
the course of the study. For example, we would not expect place value scores to be highly correlated between
pre- and post-tests given that many students learned new place value concepts over the course of the year.
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Table 3

Test-Retest Correlations Within Task and Grade

Task Grade r Lower 95% CI Upper 95% CI P
Arithmetic 1st .52 0.30 0.68 <.0001
2nd 49 0.33 0.63 <.0001
Place Value 1st .31 0.06 0.52 .0154
2nd .63 0.49 0.73 <.0001
WJd il 1st .32 0.07 0.53 .0126
2nd .38 0.20 0.53 .0001
Matrix Reasoning 1st .33 0.09 0.54 .0091
2nd .33 0.15 0.50 .0005
Go/No Go 1st .56 0.35 0.71 <.0001
2nd 45 0.28 0.59 <.0001
Spatial WM 1st 43 0.19 0.62 .0008
2nd .30 0.12 0.47 .0019

We also examined intervention uptake at the end of the study (Figure 3) by analyzing students’ ability to
decode abacus representations.

154

104

Number of Students

0.00 0.25 0.50 0.75 1.00

Abacus Familiarity Score

Grade - First Grade . Second Grade

Figure 3. Histogram of abacus familiarity scores, broken down by grade. Dashed lines show means.

We found a roughly bimodal distribution of children, with some children relatively proficient at decoding abacus
representations and others quite poor and only able to do so for 1 - 2 digit displays (a skill which they
nevertheless did not possess prior to the intervention). The relative balance of children in the two modes was
different across grades, however, with a much larger population of second-graders gaining proficiency in the
technique. These uptake findings are an important metric of the appropriateness of MA instruction. A relatively

Journal of Numerical Cognition @
2017, Vol. 3(3), 540-558 _PSYChO pen
doi:10.5964/jnc.v3i3.106 publishing psychology


http://www.psychopen.eu/

Barner, Athanasopoulou, Chu et al. 549

small proportion of first graders could accurately decode a multi-digit abacus by the end of one year of
instruction (21%). Thus, MA may not have been an appropriate curriculum for these children, given their place
value knowledge. We discuss this result in more depth below, but it qualifies the interpretation of all subsequent
outcome measures for the intervention.

Primary Analyses

The primary question addressed by our confirmatory analyses was whether assignment to treatment condition
(MA vs. Control) resulted in differential change in mathematical or cognitive measures. Due to model
convergence issues, we deviated from our pre-registered plan by removing random slopes for individual
classes (this decision is consistent with our standard operating procedures for how to deal with non-convergent
mixed effects models). Table 4 shows all models, with p-values computed via the t=z method, which is
appropriate here due to the relatively large amount of data (Barr, Levy, Scheepers, & Tily, 2013). Figures 4 and
5 show scores for mathematics and cognitive tasks, respectively.

Table 4
Coefficients and Statistics for Planned Linear Mixed Effects Models Fit to Each Task.

Task Predictor B Std Err t P
Arithmetic
Intercept 0.040 0.015 2.63 .0085
Second Grade 0.095 0.015 6.28 <.0001
Post-Test 0.146 0.011 13.52 <.0001
Mental Abacus 0.009 0.017 0.55 .5838
Post-Test x Mental Abacus -0.013 0.014 -0.90 .3665
Place Value
Intercept 0.038 0.039 0.98 .3257
Second Grade 0.266 0.038 7.05 <.0001
Post-Test 0.251 0.029 8.62 <.0001
Mental Abacus 0.021 0.042 0.50 .6154
Post-Test x Mental Abacus 0.074 0.038 1.94 .0527
WJ Il
Intercept 0.230 0.013 17.93 <.0001
Second Grade 0.154 0.012 12.98 <.0001
Post-Test 0.186 0.012 15.67 <.0001
Mental Abacus -0.001 0.014 -0.10 .9218
Post-Test x Mental Abacus 0.001 0.016 0.09 .9303
Matrix Reasoning
Intercept 0.201 0.026 7.75 <.0001
Second Grade 0.081 0.026 3.17 .0015
Post-Test 0.114 0.021 5.56 <.0001
Mental Abacus 0.005 0.029 0.17 .8661
Post-Test x Mental Abacus -0.021 0.027 -0.78 4353
Go/No Go
Intercept 0.730 0.017 42.03 <.0001
Second Grade 0.066 0.017 3.98 .0001
Post-Test 0.041 0.014 3.04 .0024
Mental Abacus 0.012 0.019 0.64 .5233
Post-Test x Mental Abacus -0.032 0.018 -1.79 .0742
T ®rsycho
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Task Predictor B Std Err t P
Spatial WM
Intercept 0.296 0.020 14.44 <.0001
Second Grade 0.049 0.019 2.59 .0095
Post-Test 0.075 0.019 3.94 .0001
Mental Abacus 0.023 0.022 1.02 .3098
Post-Test x Mental Abacus 0.014 0.025 0.53 .5950

Beginning with the math measures, we did not see evidence of differential change in performance for either the
in-house arithmetic or standardized WJ-Ill measures. This result differs from the findings of Barner et al. (2016),
where MA-related improvements on these measures emerged numerically after a single year of training. We
discuss possible reasons for this disparity below. We did see a numerical trend towards the predicted time x
condition interaction for the place-value measure, however. Students in the MA condition tended to make a
larger gain in place value scores over the course of the study than those in the control group. This result was
marginal in the relevant mixed effects model (p = .052) so we interpret it with caution. Nevertheless, it is
consistent with a similar trend in Barner et al. (2016), and appears to emerge in both Grades 1 and 2. Note that,
in exploratory t-tests, we found a significant post-test difference between intervention groups (£153.11) = -1.97,
p = .05). This test was not significant for first-graders alone, (£(50.42) = -0.51, p = .61) but was for second-
graders ({(95.61) = -2.24, p = .03).

In the cognitive measures, we did not see evidence of differential changes in performance for either matrix
reasoning or spatial working memory. These results are consistent with our previous findings and suggest
again that MA-related changes to spatial working memory do not result from even extensive MA training in
typical groups of school children.

We did, however, find an unpredicted negative interaction of time and condition, such that students in the
control group appeared to increase more in performance on the Go/No Go task. One possible explanation for
this finding is a speed / accuracy tradeoff such that children in the MA group were less accurate but faster
(perhaps stemming from the fact that MA training focuses on increasing computation speed, sometimes even at
the expense of accuracy, such that computations are executed before the abacus “fades” from the mind’s eye).
This explanation appears plausible given a visual inspection of the reaction times (Figure 6). To further probe
this possibility, we performed an exploratory analysis in which we re-ran our planned linear mixed effects model
on Go/No Go accuracy scores but this time included a main effect of reaction time, to control for the different
average timing of participants’ responses on correct trials. Consistent with the existence of a speed / accuracy
tradeoff, the magnitude of the time x condition interaction was now reduced by an order of magnitude and was
no longer significant (8 = —0.005, p = .668). Thus, we believe the Go/No Go effect reflects a shift in a speed /
accuracy tradeoff rather than a true change in cognitive functioning in the Control group.

In sum, we saw limited evidence for the effectiveness of the MA intervention. In the math tasks, only the place
value measure showed a hint of an intervention effect. And in the cognitive tasks, there were no intervention
effects except for a possible shift in response criterion on the Go/No Go task.
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Figure 4. Performance on mathematics measures by time and grade. Error bars show 95% confidence intervals, computed
by non-parametric bootstrap.

Matrix Reasoning Go/No Go Spatial WM
0.8 *
0.6 1 u}
4
[0}
o
0.4 [y
8
c
@©
g 0.2+
=
[}
o
= 081 ’:7%
@
[}
= 173
(0]
0.6 §
Q
[0]
B
Q
1 */‘ L]
0.2 v v v v v v
Pre Post Pre Post Pre Post
Time Period

Group -¢- Control -¢- Mental Abacus

Figure 5. Performance on cognitive measures by time and grade. Error bars show 95% confidence intervals, computed by
non-parametric bootstrap.
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Figure 6. Reaction times for the go/no-go task. Plotting conventions are as above.

Secondary Analyses

Spatial Working Memory Analysis

In our previous study, we found that spatial working memory scores at study initiation moderated the effects of
the intervention. Children who were above the median in spatial working memory tended to show the largest
gains in arithmetic performance from studying MA. We pre-registered this confirmatory hypothesis and
conducted it on all three of our math measures (Figure 7).
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Figure 7. Median split results for outcome measures based on intervention group and spatial working memory scores.
Plotting conventions are as above.
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Of the three, only place value showed the predicted pattern, and only for the second graders — as might be
expected based on the limited uptake among first-graders. Numerically, the pattern for place value was similar
to what we observed in the arithmetic measure in our first study: Greater growth for high spatial WM children in
the MA group. Nevertheless, in exploratory mixed-effects models, the three-way interaction of spatial working
memory, time, and condition was not significant. Likely our study would have required considerably more power
to detect such an effect.

Math Anxiety

We further assessed whether the MA intervention led to changes in math anxiety at the end of the study via an
exploratory analysis. As shown in Figure 8, though first-graders showed overall more math anxiety than second
graders, there were no significant differences in math anxiety between groups.

54
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Figure 8. Average math anxiety ratings (on a five-point Likert scale), split by group and grade level. Error bars show 95%
confidence intervals computed by non-parametric bootstrap.

General Discussion

We investigated the potential effectiveness of mental abacus (MA) instruction in the US context by conducting a
one-year, classroom-randomized trial of MA. The study had two main goals. First, we asked whether a large
group of US school children, distributed across a number of classrooms, would experience greater benefit from
MA training than from equivalent hours of standard math curriculum. Second, we explored the claim, made by
several recent studies, that even small amounts of MA training might yield benefits to visuo-spatial working
memory abilities. Rather than being a “best case” implementation of MA, our study reports a relatively realistic
trial, in that — with the exception of classroom randomization — its implementation was planned and executed by
the school and a private MA curriculum vendor with little researcher input.

Our study yielded two main results. First, we found that the first-grade children in our study generally failed to
master the abacus as a format for numerical representation: Even after a year of weekly training, they struggled
to translate numbers between abacus and numeral formats. Perhaps this difficulty was due to their very limited
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place-value understanding at study initiation (as shown by their floor-level performance on this measure).
Regardless of its source, this limitation meant that they were missing one of the prerequisites for MA learning,
thereby compromising their ability to experience other gains from the technique. In addition, they were not able
to use the technique to construct an understanding of place value. Second, we found that, for the second-
graders, one year was sufficient to acquire a basic understanding, but this level of mastery yielded only the
beginnings of measurable benefits to mathematics achievement. We saw hints of improvement in place value
understanding in the second grade MA group, but no effects on arithmetic performance more broadly. Overall,
we did not find evidence that one year of training was sufficient to augment working memory or result in other
measurable changes in cognitive tasks (e.g., reasoning or go/no-go).

These results have several implications. First, they suggest that there is prerequisite knowledge for students to
learn MA. Although our study does not reveal precisely what these prerequisites are, basic numerical concepts,
basic understanding of arithmetic operations, and some foundational understanding of place-value are all
potential candidates. If these prerequisites are not satisfied, MA may be difficult for children to master in typical
classroom environments. Thus, starting MA at an age before these prerequisites are in place may not be
effective. Second, they suggest that although longer term interventions may benefit children, short-term MA
interventions may be less likely to provide an advantage to children unless (1) they more intensive than the
intervention pursued here, or (2) they are administered to better-prepared and/or older students. While this
result may be interpreted as a negative finding, it might also be taken as evidence that alternative approaches
like MA — which children may potentially find more enjoyable than existing techniques — can be deployed
without sacrifice to learning (since the MA group was not numerically or statistically worse than control).
Despite focusing heavily on procedural learning of basic arithmetic operations like addition and subtraction, MA
resulted in similar gains in knowledge of place value and arithmetic, relative to our control curriculum, which
was designed to augment conceptual understanding.

Finally, a third implication of this work relates to the potential non-mathematical benefits of MA training. One
common claim made by developers of MA curricula is that the technique not only accelerates learning of
mathematics, but also promotes the growth of domain-general cognitive capacities like memory and attention.
Consistent with these claims, several recent studies have reported remarkable changes in spatial working
memory capacity after only brief experience with MA technique (e.g., Dong et al., 2016; Na et al., 2015; Wang
et al., 2015). Casting doubt on such findings, however, are studies that fail to find reliable transfer of working
memory training to other tasks (Melby-Lervag & Hulme, 2013; Redick et al., 2013). Consistent with this worry,
our study suggests that, to the extent these findings are reliable, they may not extend beyond tightly controlled
laboratory settings, or may be reserved to adult learners. Drawing on a larger sample size than in previous
studies, we find that students fail to show growth in spatial working memory as a function of MA training. This
result suggests that previously reported failures to find effects on spatial working memory in Indian students
was not unique to that population (e.g., because of their unusually low spatial working memory at the onset of
the study; Barner et al., 2016). Instead, in a standard US classroom setting, MA provides a useful tool for
supplementing instruction — equal to other methods and perhaps with some benefits to older students or
students with better spatial working memory — but is not a tool for making children “smarter.”

One question that remains unanswered by this study is whether MA might yield a significant advantage over
alternative techniques in a more protracted or in-depth intervention. Past research found that the largest
benefits emerged after three years of training — the amount of time it takes typical children to complete most
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existing MA curricula. Given that the first year of MA training focuses extensively on physical abacus training,
and less so on mental computations, the possibility of greater gains after more training seems plausible. Data
from the present study do not give us reason to doubt that US children would perform differently from Indian
children given additional training. In fact, the strong spatial working memory of children in the US sample
suggests that advantages might emerge earlier if training continued (at least for the second graders). Still,
additional evidence is required before MA can be recommended as superior to existing techniques.

In addition, because MA requires specialized teacher training, future studies should explore instructional
components. One open question in this area is the amount of teacher training necessary for effective instruction
— since teachers in our school appear to have found the technique challenging and required unplanned mid-
year visits from the curriculum provider. A second question is how easily MA technique can be transmitted
across teachers, such that instruction can persist within schools without incurring additional training costs each
new year. Because MA is an unfamiliar technique in US schools, teacher training is a major challenge to
implementing the technique in the classroom. Previous studies leveraged contexts in which MA instruction was
already relatively common (Barner et al., 2016; Stigler et al., 1986), making it possible that they understated the
difficulties associated with implementing an MA intervention in new contexts.

In summary, we found that MA instruction led to results comparable to our control group after one year of
training. Although MA instruction has led to mathematical performance gains in past work, it may only produce
such results after a longer intervention or in populations with stronger prerequisite mathematical or cognitive
abilities. Further, consistent with past results, we find that MA training does not augment children’s pre-existing
cognitive capacities.
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